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LMR: Learning a Two-Class Classifier for
Mismatch Removal

Jiayi Ma , Xingyu Jiang, Junjun Jiang , Ji Zhao , and Xiaojie Guo

Abstract— Feature matching, which refers to establishing reli-
able correspondence between two sets of features, is a critical
prerequisite in a wide spectrum of vision-based tasks. Existing
attempts typically involve the mismatch removal from a set
of putative matches based on estimating the underlying image
transformation. However, the transformation could vary with
different data. Thus, a pre-defined transformation model is
often demanded, which severely limits the applicability. From
a novel perspective, this paper casts the mismatch removal into
a two-class classification problem, learning a general classifier
to determine the correctness of an arbitrary putative match,
termed as Learning for Mismatch Removal (LMR). The classifier
is trained based on a general match representation associated
with each putative match through exploiting the consensus of
local neighborhood structures based on a multiple K -nearest
neighbors strategy. With only ten training image pairs involving
about 8000 putative matches, the learned classifier can generate
promising matching results in linearithmic time complexity on
arbitrary testing data. The generality and robustness of our
approach are verified under several representative supervised
learning techniques as well as on different training and testing
data. Extensive experiments on feature matching, visual homing,
and near-duplicate image retrieval are conducted to reveal the
superiority of our LMR over the state-of-the-art competitors.

Index Terms— Feature matching, supervised learning,
classifier, outlier, mismatch removal.

I. INTRODUCTION

AS A fundamental problem in vision, establishing reliable
feature correspondences between two images of the

same or similar scenes has been at the core of many tasks
including structure-from-motion, panoramic image mosaics,
content-based image retrieval, simultaneous localization and
mapping [1]–[5]. The problem is typically solved in a two-
step manner, i.e. first constructing a set of putative matches
and then removing false matches from them. Very often,
the putative set is formed by simply picking out point pairs
with sufficiently similar feature descriptors (e.g., scale invari-
ant feature transform, SIFT [6]). However, the putative set
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includes, besides true positive matches (inliers), a number
of false positives (outliers), due to ambiguities of the local
descriptors (particularly if the images suffer from low-quality,
occlusion and repetitive patterns). Therefore, it is critical to
design a robust approach to remove outliers/mismatches for
boosting the reliability of matches.

Existing methods usually address the mismatch removal by
imposing a geometrical constraint, which restricts matches
satisfying an underlying image transformation. In general,
the transformation can vary with respect to different data.
Thus, a pre-defined transformation model is often demanded,
which can be either parametric (e.g., affine, homography,
epipolar geometry [7]) or non-parametric (e.g., nonrigid [8]).
However, this demand severely limits the applicability in
many vision-based tasks such as deformable object recog-
nition and dynamic scene matching, as the transformation
models in these tasks are unknown beforehand. Moreover,
the high computational complexity is another demerit of
existing methods, especially when the image transformation
is a complex nonrigid model, which is a further obstacle in
real-time tasks.

Contributions: To address the above issues, this study
proposes a learning-based approach and formulates the mis-
match removal as a two-class classification problem, termed
as Learning for Mismatch Removal (LMR). Our method aims
to learn a general classifier to determine the correctness of
an arbitrary putative match. More specifically, we first con-
struct a representation/feature for each putative match through
exploiting the consensus of local neighborhood structures. This
match representation is general as it does not rely on any
specific image transformation, and hence can be applied to
different kinds of image pairs. The classifier is then trained
based on a set of match representations with ground truth
labels using a supervised learning technique. Experiments on
various real data demonstrate that with only 10 training image
pairs (as shown in Fig. 4, from which we extract approx-
imately 8,000 SIFT putative matches as training samples),
the learned classifier can generate satisfying results with only
tens of milliseconds on testing data even of different types of
images or with diverse transformation models. In summary,
our contributions include: (i) a general yet surprisingly effec-
tive learning approach named LMR is proposed to address
the mismatch removal problem from a novel classification
perspective; (ii) we also apply our LMR to solving real-world
tasks such as visual homing and near-duplicate image retrieval
in addition to general feature matching, and obtain better
results than other state-of-the-art competitors. To the best of
our knowledge, the learning-based technique for addressing
general mismatch removal has not yet been studied.
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The remainder of this paper is organized as follows. Sec. II
describes background material and related work. In Sec. III, we
present our learning framework for feature matching. We apply
our approach to visual homing and near-duplicate image
retrieval, and design corresponding methods in Sec. IV. Sec. V
illustrates the performance of our method in comparison with
other approaches on different kinds of vision-based tasks,
followed by concluding remarks in Sec. VI.

II. RELATED WORK

Feature matching has been widely used in many fields
including computer vision [9], pattern recognition [10],
medical image analysis [11], remote sensing [12], robot-
ics [13], etc. Here we briefly review the background material
applied as reference for the current study. This material
includes three method types: the first type establishes a set of
putative correspondence and then removes false matches, the
second type solves a correspondence matrix between a couple
of point sets, and the third type leverages the deep learning
techniques.

A. Two-Step Strategy-Based Methods

A popular strategy for solving the matching problem
involves two steps [14]: first computing a set of putative
correspondences, and then removing the outliers via geo-
metrical constraints. Putative correspondence instances are
obtained in the first step by pruning the set of all possible
point matches. This scenario is achieved by computing feature
descriptors at the points and eliminating the matches between
points whose descriptors are excessively dissimilar. Lowe [6]
proposed the SIFT descriptor with a distance ratio method
that compares the ratio between the nearest and next-nearest
neighbors against a predefined threshold to filter out unstable
matches. Guo and Cao [10] proposed a triangle constraint,
which can produce better putative correspondences in terms
of quantity and accuracy compared with the distance ratio
in [6]. Pele and Werman [15] applied the earth mover’s
distance to replace the Euclidean distance in [6] to measure
the similarity between descriptors and improve the matching
accuracy. In addition, Hu et al. [16] adopted the local selection
of a suitable descriptor for each feature point instead of
employing a global descriptor during putative correspondence
construction. A cascade scheme has been suggested to prevent
the loss of true matches, which can significantly enhance the
correspondence number [17], [18].

Although there have been various sophisticated approaches
for putative match construction, the use of only local appear-
ance features will inevitably result in a lot of false matches.
In the second step, robust estimators based on some geomet-
rical constraints are used to detect and remove the outliers.
To remove false matches from putative sets, numerous meth-
ods have been developed over the last decades, which can be
roughly divided into four categories, say statistical regression
methods, resampling methods, non-parametric interpolation
methods, and graph matching methods.

Statistics literature shows that the methods that minimize
the L1 norm are more robust and can resist a larger pro-
portion of outliers compared with quadratic L2 norms [19].

Liu et al. [20] proposed a regression method based on
adaptive boosting learning for 3D rigid matching. Recently,
Maier et al. [21] introduced a guided matching scheme based
on statistical optical flow, and promising results have been
demonstrated in terms of both accuracy and efficiency. The
most popular resampling method is random sample consen-
sus (RANSAC) [7], which has several variants such as maxi-
mum likelihood estimation sample consensus [9], progressive
sample consensus [22], and spatially consistent random sam-
ple consensus [23]. These methods adopt a hypothesize-and-
verify approach and attempt to obtain the smallest possible
outlier-free subset to estimate a provided parametric model by
resampling. The statistical regression and resampling meth-
ods rely on a predefined parametric model, which become
less efficient when the underlying image transformation is
nonrigid; these methods also tend to severely degrade if
the outlier proportion becomes large [24]. To mitigate these
issues, several non-parametric interpolation methods [8], [14],
[24]–[26] have been investigated. These methods commonly
interpolate a non-parametric function by applying the prior
condition, in which the motion field associated with the
feature correspondence is slow-and-smooth. However, they
typically have cubic complexities and the computational costs
are huge for large putative sets, which limits their applicability
on real-time tasks. Graph matching is another technique to
solve the matching problem; several representative studies
include spectral matching [27], dual decomposition [28],
mode-seeking [17], [29], composition based affinity optimiza-
tion [30], [31], and graph shift (GS) [32]. Graph matching
provides considerable flexibility to the transformation model
and delivers robust matching and recognition. Nevertheless,
it suffers from similar drawbacks of its non-polynomial-hard
nature.

Additionally to the methods mentioned above, the piece-
wise smoothness constraints have also been introduced
to feature matching, such as coherence based deci-
sion boundaries [33]–[35] and grid-based motion statis-
tics (GMS) [36]. The former aims to discover a coherence
based separability constraint from highly noisy matches and
embed it into a correspondence likelihood model, and the
accurate matches are then obtained by varying affine motion
model. It is able to yield high quality matches at wide base-
lines, and it is robust to a large number of outliers. While the
latter removes outliers by converting the motion smoothness
constraints into statistical measures based on the number of
neighboring matches. A major advantage of this algorithm is
that it develops an efficient grid-based score estimator. It can
provide real-time, ultra-robust feature correspondences, and
hence is beneficial to video applications.

B. Correspondence Matrix-Based Methods

Another strategy is to incorporate a correspondence matrix
with a parametric or non-parametric geometrical constraint.
In this situation, the feature points usually do not have
information of local image descriptors. One of the best-known
point matching approaches is iterative closest point (ICP) [37].
ICP alternatively assigns a binary correspondence utilizing
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nearest-neighbor relationships; it then performs least squares
transformation estimation via the estimated correspondence
until a local minimum is reached. Chui and Rangarajan [38]
established a general framework for nonrigid matching called
thin plate spline-based robust point matching, which replaces
the nearest point strategy of ICP with soft assignments within a
continuous optimization framework that involves deterministic
annealing. Yang et al. [39] further introduced an approach
termed as global and local mixture distance with thin plate
spline, and has shown promising results. Boughorbel et al. [40]
brought the Gaussian fields into rigid registration, which was
later generalized to the nonrigid setting in [41] and [42]. Point
set registration has commonly been solved by probabilistic
methods in recent years [43]–[46]. These methods formulate
the matching problem as the estimation of a mixture of
densities utilizing Gaussian mixture models, which is solved
within the maximum-likelihood framework and expectation-
maximization algorithm. However, since these methods com-
pletely discard the abundant information of local image
descriptors, their performance very likely degrades, especially
when the image pair involving nonrigid deformations [46].

C. Learning-Based Methods

Recently, many deep learning-based approaches have made
dramatic progress on a wide range of complex computer
vision tasks, such as image classification, object detection
and tracking, image segmentation [47]–[49], etc. Analo-
gously, it is reasonable and meaningful to learn from raw
images directly for certain matching tasks including key-
point detection and feature description [50], image patch
matching [51], and stereo matching [52]. For the key-point
detection and feature description, different from traditional
purely engineered features like SIFT, the learning-based meth-
ods aim to construct sparse point correspondences from
image pairs of the same or similar scenes by leveraging
deep learning architectures [50], [53]–[56]. Although these
methods have been verified to be superior to those hand-
crafted representations [57], [58], there are still a large
number of false matches in the generated putative match
set [55], and hence an efficient mismatch removal method
as the post-processing is still required. Image patch match-
ing aims to extract the latent deep features from image
pathes using deep convolutional networks and compute a
similarity between the extracted features to establish reliable
path correspondences [51], [59]–[61]. It has been applied to
wide-baseline stereo [52], object instance recognition and
image registration [51], [62]–[64]. Nevertheless, this kind of
methods operates on region and aims to establish region
correspondences, which is different from point matching,
especially when the image pair undergoes a nonrigid deforma-
tion. Learning-based stereo matching [52], [65], which aims
to extract the depth information of each pixel (i.e., depth
map) from the rectified image pair typically obtained from a
binocular camera, has occupied the top performance in the
common datasets. It has achieved great success in several
stereo applications such as automatic driving, robotics and
3D scene reconstruction [13], [66]. However, the success of

these methods highly depends on the specific image pair that
must be rectified and largely overlapped.

Another application of deep learning to the matching task
is learning local and global features from two point sets
to find reliable point correspondences. This inspiration has
obtained great concern in 3D point cloud registration due
to the dense point distribution [67]–[69], which can form
obvious context structure that is similar to the image texture
and easy to learn under a deep convolutional network. Feature
descriptor learned from 3D point clouds can be regarded as
a substitution of the existing hand-crafted 3D point feature
descriptors such as fast point feature histograms [70] and
spin images [71]. However, the learning strategy for 3D point
clouds is in general not suitable for sparse 2D feature points
due to the lack of obvious context structure. To the best
of our knowledge, learning directly from 2D feature points
instead of the image pixel information for establishing point
correspondences has not been adequately explored. To this
end and most recently, Yi et al. [72] presented a first attempt
to introduce a deep leaning-based technique for mismatch
removal from putative matches, termed as learning to find
good correspondences (LFGC), which aims to train a multi-
layer perceptron from a set of putative sparse matches and the
camera intrinsics under a parametric geometrical constraint,
to label the testing correspondences as inliers or outliers
and output the camera motion simultaneously. However, the
method requires ground truth camera intrinsics as input and
depends on a specific parametric transformation model, failing
to handle general matching problems such as deformable
image matching which cannot be characterized by a parametric
model. In our experiments, we have demonstrated significant
superiority of our LMR over LFGC in addressing general
image matching.

III. METHOD

As aforementioned, the first step is to construct a set of
putative matches by considering all possible matches between
the given two feature point sets with those having distant
descriptors eliminated. Then the problem boils down to remov-
ing false matches from the putative set. Fortunately, many
well-designed image descriptors (e.g., SIFT) can efficiently
establish putative matches. Thus, in the following, we focus on
mismatch removal and formulate it as a two-class classification
problem under an efficient learning framework.

A. Overview of the Framework

The proposed learning framework for feature matching is
presented in Fig. 1. Without loss of generality, suppose the
training set contains N image pairs and for each image pair
we have extracted a set of putative matches Sn = {(xi , yi )}Ln

i=1
by using an off-the-shelf image descriptor, where xi and yi

are the spatial positions of two corresponding feature points,1

and Ln(n ∈ IINN ) is the number of putative matches in the
n-th image pair. Therefore, we have L = �N

n=1 Ln putative
matches in total in the training set, and their ground truth labels
(i.e., being inlier or outlier) are available in advance. The goal

1Strictly we should use the notations xn
i and yn

i ; here we omit the
superscripts to keep them uncluttered.
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Fig. 1. The proposed learning framework for feature matching. For the
putative matches in the training set, blue and red lines indicate ground truth
inliers and outliers, respectively.

is to learn a classifier that can distinguish inliers from outliers
in a new putative set, e.g. extracted from a test image pair.

Our framework involves three major steps: match repre-
sentation, classifier training and testing. In the match repre-
sentation step, we aim to describe each putative match by a
group of properties, called a representation,2 which could be
constructed based on the geometrical relationship among the
putative set that the putative match belongs to. After obtaining
all the match representations in the training set together with
their ground truth labels, we can then train a classifier using
a supervised learning technique. In the testing step, given a
new image pair, we first extract a set of putative matches
and construct their representations, and then use the learned
classifier to identify the outliers.

Compared with the traditional matching methods, the pro-
posed learning framework is more general and efficient. On the
one hand, unlike traditional methods (including the existing
deep learning-based method [72]) which typically rely on
certain special transformation models, the learned classifier
in our framework can be used for feature matching on any
new image pairs. By using a general match representation,
the method works well even when the training and testing data
undergo different types of image transformations. On the other
hand, our learning framework is also quite efficient. With only
10 training image pairs involving about 8,000 putative matches
and an off-the-shelf supervised learning technique, the method
is able to generate promising matching performance on arbi-
trary testing data. While in the testing process, only tens of
milliseconds are needed to identify the mismatches, which is
about one order of magnitude faster than many commonly used
methods.

B. Match Representation

Constructing a proper match representation is the key to the
success of our learning framework. Generally, its composed
properties should not only be able to distinguish the inliers
and outliers efficiently, but should also be general enough to
adapt to different types of image transformations. In addition,

2It is typically termed as feature in the machine learning and computer
vision communities. However, to avoid confusion with the term feature
matching, here we use the term representation instead.

as the input in this step is just a putative match set composed
of only spatial positions of feature correspondences, the match
representation then cannot be constructed based on the original
image content.3 Instead, it aims to exploit the geometrical
relationship among the putative set.

For an image pair of the same scene or object, the absolute
distance between two feature points may change significantly
under viewpoint changes (e.g., stereo disparities) or nonrigid
deformations (e.g., dynamic scenes); however, the spatial
neighborhood relationship among feature points representing
the local topological structures of an image scene would be
generally well preserved [4], [73]. Specifically, a variety of
approaches exploiting neighborhood consistency have been
investigated to improve feature matching, image retrieval, and
spatial verification [74]–[78]. We take the nonrigid human
face as an example. Due to the physical constraint of bones
and muscles, expression and viewpoint changes cannot lead
to topological structure changes of the face, such as the
relative positions of eyes, nose, mouth, chin, etc. Based on
this observation, in the following, we design two properties
for constructing a general match representation.

1) Consensus of Neighborhood Elements: For a putative
match (xi , yi ) from Sn , if it is an inlier, then the distributions
of local neighborhood elements of the two corresponding
feature points should be similar. In contrast, for an outlier,
the corresponding neighborhood distributions will be quite
different. We call this property the consensus of neighborhood
elements. To capture such a property mathematically, we use
multi-neighborhood representation and define a set of neigh-
borhoods with different sizes {K j }M

j=1, e.g. {N K j
xi }M

j=1 and

{N K j
yi }M

j=1, where N K j
xi denotes the neighborhood of point xi

composed of its K j nearest neighbors in the point set {xi }Ln
i=1

under the Euclidean distance. We call this strategy multiple K -
nearest neighbors (multi-KNN). Then the consensus of neigh-
borhood elements between N K j

xi and N K j
yi (e.g., the degree

of local neighborhood preserving between xi and yi ) can be
characterized by

r
K j
i = IK j

i /K j , (1)

where IK j
i ≤ K j is the number of common elements in the

two neighborhoodsN K j
xi and N K j

yi , and r
K j
i ∈ [0, 1] is the ratio

of common feature points in the corresponding neighborhoods.
Clearly, an inlier will lead to a large value of r

K j
i and vice

versa. Note that the common elements cannot be determined
without ground truth. Nevertheless, a good approximation is
to apply the number of putative matches between N K j

xi and

N K j
yi contained in Sn as a replacement.4

3It is the major difference between our approach and the existing learning-
based matching methods.

4This is due to that if the putative match (xi , yi ) is an inlier, then the

putative matches simultaneously appearing in the local neighborhoods N K j
xi

and N K j
yi will probably be inliers. On the contrary, if (xi , yi ) is an outlier,

then there will be probably no putative match simultaneously appearing in

N K j
xi and N K j

yi .
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Fig. 2. Schematic illustration of the consensus of neighborhood topology. The putative match (xi , y j ) is an inlier in the left group and an outlier in the right
group. For each group, the first plot shows a putative match (xi , y j ) together with its neighborhood elements, their corresponding displacement vectors are
shown in the second plot with wi corresponding to (xi , y j ), and �wi in the third plot is the average of the three neighboring vectors.

Considering the multi-KNN, the consensus of neighborhood
elements for the putative match (xi , yi ) is then defined as

Ri = �
r K1

i , r K2
i , · · · , r KM

i

�
. (2)

2) Consensus of Neighborhood Topology: The consensus
of neighborhood elements described above essentially aims
to preserve the intersection of neighbors, which ignores their
topological structure. To address this issue, here we design
another property to further exploit the consensus of neighbor-
hood topology.

For a putative match (xi , yi ) from Sn , as shown in Fig. 2,
we first extract its IK j

i neighboring putative matches located in

N K j
xi and N K j

yi , where K j = 5 and IK j
i = 3. Next, we convert

the putative matches into displacement vectors, where the head
and tail of each vector correspond to the spatial positions
of two corresponding feature points in the two images, and
the vector associated with (xi , yi ) is highlighted with bold,
i.e. wi . Subsequently, we compute the average displacement
vector of the IK j

i neighboring putative matches, i.e. �wi . The
neighborhood topology can then be exploited by compar-
ing the difference between wi and �wi . More specifically,
the changes of topological structures of the IK j

i elements with
respect to xi and yi will lead to significant differences between
wi and �wi in both lengths and directions, as demonstrated in
the two examples in Fig. 2.

According to the analysis above, we define the consensus
of neighborhood topology based on the ratio of length and the
angle between wi and �wi .

• Consensus of ratio of length between wi and �wi :

s
K j
i =

⎧
⎪⎨

⎪⎩

exp



− (p
K j
i − 1)2

2σ 2
1

�
, IK j

i ≥ 1,

0, IK j
i = 0,

(3)

where p
K j
i = max{|wi |,|�wi |}

min{|wi |,|�wi |} ≥ 1 characterizes the ratio of
length between wi and �wi .

• Consensus of angle between wi and �wi :

t
K j
i =

⎧
⎪⎨

⎪⎩

exp



− (θ
K j
i )2

2σ 2
2

�
, IK j

i ≥ 1,

0, IK j
i = 0,

(4)

where θ
K j
i = �wi ,�wi � ∈ [0, π] characterizes the angle

between wi and �wi .

Clearly, s
K j
i , t

K j
i ∈ [0, 1], and an inlier will lead to large

values of s
K j
i and t

K j
i and vice versa. Note that in Eqs. (3)

and (4), we choose the Gaussian penalty with σ1 and σ2
being the corresponding range parameters. In our experiments,
we empirically fix σ1 = 0.4 and σ2 = 0.8. The use of Gaussian
penalty can normalize the value of property into the range
of [0, 1]. Besides, the penalty curve has a “long tail” which
can prevent over-penalization on the outliers. Considering the
multi-KNN, the consensus of neighborhood topology for the
putative match (xi , yi ) is then defined as

STi = �
sK1

i , t K1
i , sK2

i , t K2
i , · · · , sKM

i , t KM
i

�
. (5)

3) Match Representation Construction and Analysis: Based
on the two properties defined in Eqs. (2) and (5), the final
match representation for a putative match (xi , yi ) from Sn is
a 3M dimensional vector defined as

Fi = �
r K1

i , sK1
i , t K1

i , r K2
i , sK2

i , t K2
i , · · · , r KM

i , sKM
i , t KM

i

�
.

(6)

Now we revisit the whole process of match representation
construction in the training phase. Given N training image
pairs and for the n-th image pair we have extracted Ln putative
matches Sn ; for each putative match (xi , yi ) from Sn we
construct its match representation Fi based on Sn and then
Ln match representations are obtained for the n-th image pair.
We repeat this procedure on the N training image pairs, and
obtain L match representations for all the L putative matches.

To verify the discriminability of the proposed match repre-
sentation, here we randomly choose 10 image pairs including
wide baseline, remote sensing and medical images, and com-
pute their match representations for visualization, as shown
in Fig. 3. Since the dimension of the match representation
3M � 3, we only choose three entries (r

K j
i , s

K j
i , t

K j
i ) for

visualization, as shown in the left two plots. In addition,
we also apply principal component analysis (PCA) to the data
and extract the first two principal components to further show
the discriminability. From the results in the right plot, we see
that the distributions of inliers and outliers are quite different,
which are almost linearly separable.

C. Classifier Training and Testing

After obtaining the L match representations {Fi } for all the
L putative matches on the training set, i.e. F ∈ IRL×3M , we can
then train a classifier f , i.e. L = f(F), based on a supervised
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Fig. 3. Schematic illustration of the discriminability of the proposed match representation. In the left two plots, we only choose the three entries (r
K j
i , s

K j
i , t

K j
i )

corresponding to K j = 5 and K j = 10 from the 3M dimensional match representation for visualization. In the right plot, we apply PCA on the whole match
representation set and show the first two principal components.

Algorithm 1 The LMR Algorithm

learning technique, where L ∈ IRL×2 is the ground truth labels.
Specifically, the ground truth label is represented as (1, 0) for
an inlier and (0, 1) for an outlier.

There are several widely used supervised learning tech-
niques for classifier training, such as Bayes classifiers based
on probability statistics, neural network based on multilayer
perceptron, decision tree or random forest (RF) based on
logical decision rules, and support vector machine (SVM)
based on kernel trick [79]. In this paper, we choose the back-
propagation neural network (BPNN) as an instance5 [80].
In general, the neural network contains three kinds of layers,
i.e. input, hidden and output layers. A number of neurons exist
in the hidden layer(s), each of which is a calculation unit.
These units are somehow connected and their weights and
biases are gradually refined through gradient back propagation
so as to minimize a certain loss between the output and ground
truth.

During the testing phase, given a new image pair to be
matched, we first extract a set of putative matches and con-
struct their match representations. Then we use the trained
classifier to generate a 2D output for each match representation
separately. The two elements of the output can be respectively
seen as the confidences of the putative match being an inlier
and an outlier, and the final decision goes to the category with
the larger value. The whole procedure of the proposed LMR
algorithm is outlined in Alg. 1.

5We have also considered other learning techniques in our experiments.

D. Computational Complexity

Given a set of N putative matches extracted from a test
image pair, the major computational cost focuses on the step
of match representation construction.6 It involves searching
the K j nearest neighbors for each feature point, which has
about O((K j + N) log N) complexity by using K-D tree [81],
and hence the computational complexity of Line 8 in Alg. 1 is
about O((

�M
j=1 K j + M N) log N). The computation of con-

fidence for each putative match does not depend on the scale
of putative matches, and hence the computational complexity
of Line 9 is about O(N). As

�M
j=1 K j is a constant and

M � N , the total computational complexity of our LMR can
be simply written as O(N log N). That is to say, our LMR
has linearithmic complexity which is significant for handling
large-scale problems or real-time applications.

E. Implementation Details

To construct match representations, we have defined a set
of neighborhoods. Clearly, it would be better if the neigh-
borhood is defined on only inliers, which can preserve the
consensus of neighborhood elements and topology better.
However, the inlier set is unknown in advance; here we
seek an approximation to it. More specifically, we calculate
the consensus of neighborhood elements for each putative
match by Eq. (1) at K j = 10, and then use only those
putative matches with r > 0.2 for neighborhood construction.7

This operation can filter out quite a lot of outliers without
sacrificing too many inliers. In addition, we choose M = 11
and K = {2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15} to construct the
neighborhoods {N K j

xi }M
j=1 and {N K j

yi }M
j=1.

For the BPNN, we design a simple 3-hidden-layer net-
work [48, 10, 2] with each element denoting the number
of neurons in the corresponding hidden layer. In the input
and hidden layers we use the hyperbolic tangent sigmoid as
activation function and log-sigmoid transfer function in the
output layer. In the training phase, we set the stop condition
with the max iteration at 5,000 or the min gradient value at

6Without ambiguity, in this paper we use the same symbol N with different
meanings in different contexts.

7It means that the neighborhood is defined on the putative matches with
r > 0.2. We do not remove the matches with r ≤ 0.2, and the outlier removal
is still operated on the original putative set.
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Fig. 4. The 10 image pairs used for training in our LMR, which contains in
total 7,659 SIFT putative matches as the training samples with 3,858 positive
samples and 3,801 negative samples.

10−5 with the target function being the mean square error,
and the scaled conjugate gradient back-propagation is used
as the gradient descent mode for efficient training. We have
used two other supervised learning techniques such as RF and
SVM for comparison in our experiments. For the former we set
the number of trees as 20 to train a forest for classification,
while for the latter we use the linear kernel and sequential
minimal optimization to train our SVM with the max iteration
at 50,000. In addition, all these training and testing proce-
dures are implemented with MATLAB toolbox. Meanwhile,
we found that the learned classifier in general will have better
generalization ability if the image transformations involved in
the training set are more complex. In our experiments, we use
10 wide baseline and deformable image pairs for training, and
test the learned classifier on all the other data even of different
types of images or with different transformation models.8 The
10 pairs (as shown in Fig. 4) contain 7,659 putative matches
in total (i.e., L = 7, 659) with 3,858 inliers and 3,801 outliers.

IV. APPLICATIONS

This section describes how to apply our LMR to different
vision-based tasks, including visual homing and near-duplicate
image retrieval, whose performance is dominated by the fea-
ture matching quality.

A. Visual Homing

Visual homing aims to navigate a robot from an arbitrary
starting position to some goal or home position solely based
on visual information. It is usually solved by first matching
local features in two panoramic images captured respectively
at the current position and home position, and then trans-
forming the correspondences into motion flows which are
finally used to determine the homing vector [3]. We use
LMR for robust feature matching and estimate the dense
motion flow F accordingly. And then we derive the focus-
of-contraction (FOC) and focus-of-expansion (FOE) based on
it to determine homing directions.

1) Feature Matching for Panoramic Image Pairs: In the
visual homing problem, the panoramic image usually has
reached 360◦ field of view horizontally, which is typically

8In fact, the classifier can perform better if the testing data is closely related
to the training data. However, in this paper we use the fixed training data to
demonstrate the generality of our approach.

called “360 cylindrical panorama”. The image plane of this
type of image could be seen as a cylinder unrolled along with
a certain vertical cutting line. Therefore, it is not appropriate
to define the distance between pixels on the image plane
by directly using the Euclidean distance, as in this case the
distance will depend on the cutting line. For example, two
nearby pixels on the cylinder will have large distance on the
image plane if they are located on the two sides of the cutting
line. To address this issue, we define the two dimensional pixel
position as a horizontal coordinate and a vertical coordinate,
i.e. x = (xh, xv )T, the Euclidean distance then can be modified
as the following cylinder distance:

CylDist2(xi , x j )=
�
CylDisth(xh

i , xh
j )

�2+�
CylDistv (xv

i , xv
j )

�2
,

(7)

where the horizontal and vertical distances are defined as

CylDisth(xh
i , xh

j ) = min
�|xh

i − xh
j |, |xh

i − xh
j − xh

max|,
|xh

i − xh
j + xh

max|

, (8)

CylDistv (xv
i , xv

j ) = |xv
i − xv

j |, (9)

with xh
max being the horizontal width of the image plane.

To conduct feature matching on panoramic image pairs by
using our LMR in Alg. 1, the only required modification is
to construct the neighborhoods {Nx,Ny} in Lines 3 and 8 by
using the cylinder distance defined in Eq. (7) rather than the
original Euclidean distance. This strategy enables our method
to identify those true matches located on the two sides of the
cutting line.

2) Motion Flow Estimation: After obtaining the accurate
feature match set, e.g. {(xi , yi )}N

i=1, we focus on recovering the
dense motion flow F from the matches. To this end, we first
convert the match (xi , yi ) to a motion vector (ui , vi ) according
to the cylinder coordinate, e.g.,

ui = xi , (10)

vi = (yh
i − xh

i + αxh
max, yv

i − xv
i ), (11)

where ui is a position on an image plane, vi is its associated
motion vector, and parameter α ∈ {0,±1} is used to wrap the
horizontal displacement to [−xh

max/2, xh
max/2].

To estimate the dense motion flow F , i.e. vi = F(ui ) for
a true match (xi , yi ), it is natural to consider the supervised
learning technique such as regression. Typically, we have a
limited number of matches and the flow F may be relatively
complex due to nonrigid transformation, and hence we cannot
expect to obtain satisfactory performance by blindly choosing
a function model. A highly-parameterized model will probably
overfit the data, and a too simple model may not adequately
describe the data. Regularization in this context provides us
with one way to strike the appropriate balance in creating the
model. The goal of regularization is to solve the empirical
error minimization problem by controlling the complexity of
the function space, for example, by introducing a penalty term
into the empirical error

ERR(F) + μPEN(F), (12)

where the first term is the empirical error measuring the fitting
degree of the function and the samples, the second term is
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a penalty item which requires the function to be not too
complex, and μ is used as a regularization parameter to make
a trade-off between the two items. We model the flow F by
restricting it to lie within a specific functional space H, namely
a reproducing kernel Hilbert space (RKHS) [82], which is
defined by a positive definite matrix-valued kernel �. In this
paper we choose a diagonal decomposable Gaussian kernel
�(ui , u j ) = e−β
ui −u j 
2 · I with β being a spread parameter
and I being a 2 × 2 identity matrix. By using the L2 loss on
the data fitting and L2 functional norm on the model com-
plexity, the Tikhonov regularization minimizes the following
regularized risk functional [82]:

E(F) = min

 �N

i=1

vi − F(ui )
2 + μ
F
2

H
�
. (13)

According to the representer theorem [82], the optimal solu-
tion of the minimization problem in Eq. (13) is given by

F(u) =
�N

i=1
�(u, ui )ci , (14)

with the coefficients {ci }N
i=1 determined by a linear system:

(� + μI)C = V, (15)

where � ∈ IRN×N is the so-called Gram matrix with �i j =
e−β
ui −u j 
2

, C = (c1, · · · , cN )T and V = (v1, · · · , vN )T are
matrices of size N × 2.

Note that there are two parameters needing to be set, i.e., μ
and β, where we fix them as μ = 3 and β = 0.8 throughout
this paper. In addition, to make the dense motion flow estima-
tion more robust, the vector field consensus [14] algorithm
is preferable. It generalizes the Tikhonov regularization to
handle contaminated data under a Bayesian framework, which
introduces a latent variable to resist outliers.

3) Estimation of Homing Direction: It has been shown in
previous work that the motion flow of a panoramic image
pair has two singularities [83], which correspond to the FOC
and FOE, respectively. In addition, these two singularities are
separated by half horizontal width of the panoramic image.

The FOC and FOE have been used in many applications,
including 3D environment reconstruction and estimation of
time-to-contact in visual navigation. Specifically, in the visual
homing literature, the FOC and FOE are used to determine the
homing direction [3], [84]. To localize the two singularities,
a heuristic strategy has been proposed by detecting whether
the SIFT features have grown or shrunk with respect to their
sizes in the reference home image [84].

Next, we introduce a method that uses the dense motion
flow to determine the FOC and FOE [3]. In general, the FOC
and FOE should lie on the horizontal line uv = uv

max/2 and are
separated by uh

max, with uh
max and uv

max being the horizontal
width and vertical width of the panoramic image. Therefore,
there is no significant difference about the estimation of these
two singularities. In the following, we will only focus on
the estimation of FOC, and the generalization to FOE is
straightforward.

After obtaining the motion flow F(u) in Eq. (14), finding
out the analytical solution of its singularities is impossi-
ble or very difficult. Instead, some numerical method can be
adopted to seek an approximate solution. Formally, since FOC

lies on the horizontal line uv = uv
max/2, we define a 1D

function

g(uh) � F([uh, uv
max/2]). (16)

Clearly, g(θ) is continuous and differentiable, and the singu-
larities correspond to the points whose left and right local
neighborhoods have different signs. We give the formal defi-
nition of the FOC as below.

Definition Focus of Contraction (FOC): Focus of contrac-
tion uh

FOC is the point satisfying that: (i) g(uh
FOC) = 0; and

(ii) ∃ � > 0 satisfies that g(uh) > 0 for any uh in the left
�-neighborhood of uh

FOC and g(uh) < 0 for any uh in the
right �-neighborhood of uh

FOC.
We use a coarse-to-fine grid search strategy to find the opti-

mal solution of FOC, which is able to achieve arbitrary pre-
cision. In the visual homing literature, usually all panoramic
images have identical compass orientation by preprocessing.
By converting the coordinate to angle, the homing direction
can then be obtained as follows:

θhoming = θFOC = 2π · uh
FOC

uh
max

. (17)

With this homing direction, we can fulfill the visual hom-
ing task and navigate a robot back to its reference home
position.

B. Near-Duplicate Image Retrieval

Given a query image, the goal of near-duplicate image
retrieval is to retrieve the images of the same object or scene
from a large database and return a ranked list. It is typically
solved by first calculating the similarities between the query
image and all the images in the database, and then sorting
the similarities to return a ranked list [85]. In this procedure,
the similarity between two images could be determined by the
similarity of features contained in them, while the feature
similarity is usually characterized by the feature matching
result. Therefore, our LMR is desirable to produce reliable
performance.

For the near-duplicate image retrieval problem, we are given
an image database S = {Ii }N

i=1 together with a similarity
function s: I × I → IR+ that assigns each pair of images
with a positive similarity value. In this paper, the similarity
function s is defined as follows: we first establish SIFT
putative feature correspondences and subsequently use our
LMR to remove false matches, the similarity s(Ii , I j ) is then
assigned by the number of preserved matches in the two
given images Ii and I j . Therefore, we obtain an N × N
similarity matrix S related to the whole image database, where
Si j = s(Ii , I j ).

Given a query image Ii , we aim to search the most similar
images from a set of known database images S. By sorting
the values {Sin}N

n=1 in decreasing order, we obtain a ranking
of database images according to their similarities to the query,
for example, the most similar database image has the highest
value and is listed first. Usually, the first M (M � N) images
are returned as the most similar to the query Ii .
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Fig. 5. Feature matching results of our LMR on 9 typical image pairs involving different types of transformations (blue = true positive, black = true
negative, green = false negative, red = false positive). For each group of results, the first value is the initial inlier ratio, while the rest two values are
the precision and recall after using our learned classifier to remove mismatches, i.e., (Inlier Ratio, Precision, Recall). For visibility, in the image pairs,
at most 100 randomly selected matches are shown, and we do not show the true negatives. (a) (13.28%, 100.0%, 100.0%). (b) (84.62%, 99.72%, 94.65%).
(c) (54.76%, 98.55%, 98.55%). (d) (79.72%, 98.21%, 97.77%). (e) (87.99%, 98.85%, 95.82%). (f) (78.29%, 99.27%, 98.25%). (g) (49.50%, 100.0%, 100.0%).
(h) (85.81%, 99.25%, 99.25%). (i) (75.81%, 98.21%, 97.00%).

V. EXPERIMENTAL RESULTS

In this section, we first evaluate the performance of our
LMR for general feature matching and test its robustness and
generality, and then apply it to solve two vision-based tasks,
i.e., visual homing and near-duplicate image retrieval. We use
the open source VLFEAT toolbox [86] to extract SIFT putative
matches and to search nearest neighbors with K-D tree. The
experiments are conducted on a desktop with 4.0 GHz Intel
Core i7-6700K CPU, 8GB memory, and MATLAB code.

A. Results on Feature Matching

1) Qualitative Illustration: We first present some intu-
itive results on the matching performance of our LMR.
To this end, we test it on 9 representative image pairs
undergoing different types of transformations including affine
(e.g., Fig. 5a), homography (e.g., Fig. 5b), epipolar geometry
(e.g., Figs. 5c-5f), and nonrigid deformation (e.g., Figs. 5g-5i).
We use precision and recall to characterize the matching
performance, where precision is defined as the percentage
of true inliers among those preserved “inlier” by a matching
algorithm, and recall is defined as the percentage of preserved
true inliers among the whole inliers contained in the original
putative set. The ground truth is established by manually
checking each putative match in each image pair, and we
make the benchmark before conducting experiments to ensure
its objectivity. From the results, we see that our learned
classifier has strong generalization ability to handle different
types of transformations, where very few putative matches are
misjudged on all the 9 test pairs.

2) Quantitative Comparison: To provide quantitative com-
parisons with state-of-the-art competitors, we conduct experi-
ments on four datasets, say RS [87], Retina [11], DAISY [88],
and DTU [89]. RS is a remote sensing dataset consists
of 153 image pairs including color-infrared, SAR and

panchromatic photographs which suffer from parametric trans-
formation model. Retina is a medical image dataset consists
of 52 retinal image pairs undergoing non-parametric transfor-
mation model. DAISY [88] consists of wide baseline image
pairs and sequences with ground truth depth maps, in which
we create 52 image pairs in total for evaluation. DTU contains
a lot of different scenes taken from 49 or 64 positions with
ground truth camera positions and internal camera parameters,
in which we choose two scenes from the dataset (i.e., Frustum
and House) and create 131 image pairs involving relatively
large viewpoint changes for evaluation.

For the first two publicly available datasets, the correctness
of each feature correspondence in a putative set is deter-
mined based on the ground truth information supplied by
the corresponding datasets. The rest two datasets are col-
lected by ourselves, where the ground truth correspondence is
established with respect to a benchmark prepared in advance,
before conducting any experiments, to ensure objectivity; in
particular, the correctness of each putative correspondence
in each image pair is checked manually. Seven representa-
tive matching algorithms are used for comparison including
RANSAC [7], identify correspondence function (ICF) [24],
GS [32], manifold regularization-based robust point matching
(MR-RPM) [8], GMS [36], LFGC [72], and locality preserving
matching (LPM) [4]. In particular, RANSAC is a classical
resampling method, ICF and MR-RPM are non-parametric
interpolation methods, GS is a graph matching method, GMS
and LPM are neighborhood preserving methods, and LFGC
is a deep learning method. We implement all the competitors
based on publicly available codes and try our best to find
optimal parameter settings. Throughout all the experiments,
eight algorithms’ parameters are all fixed.

The initial inlier ratio, precision, recall and runtime statistics
on the four datasets are summarized in Fig. 6. We see that the
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Fig. 6. Quantitative comparison on four datasets. From top to bottom: cumulative distributions of inlier ratio in the putative sets, precision, recall, and
runtime. From left to right: results on the datasets of RS [87], Retina [11], DAISY [88], and DTU [89]. Seven matching algorithms such as RANSAC [7],
ICF [24], GS [32], MR-RPM [8], GMS [36], LFGC [72] and LPM [4] are used for comparison. A point on the curve in the first and third rows with coordinate
(x, y) denotes that there are 100 ∗ x percent of image pairs which have Inlier Ratio or Runtime no more than y.

initial inlier ratios, especially in the second dataset, are quite
low, which makes the feature matching task challenging. The
average numbers of putative matches in the four datasets are
about 445, 69, 1,476 and 546, respectively. For the precision
and recall statistics, we see that RANSAC can produce sat-
isfying results on all the four datasets. This is due to that
we have used enough sampling times to obtain an outlier-free
subset for transformation estimation even in case of low initial
inlier ratio. ICF and GS usually have high precision or recall,
but not simultaneously. MR-RPM works well on most image
pairs, but may fail in case of low initial inlier ratio. The
performance of GMS is not that satisfying, especially on
the Retina dataset, due to that it usually requires a larger
number of putative matches to achieve better performance,
and the consensus of neighborhood topology demonstrated
in Fig. 2 cannot be well addressed either. LFGC typically
achieves high precision but low recall. This is due to that its
main goal is to identify good matches and accurately recover
the transformation matrix between two point sets, which may

falsely remove a set of unstable true matches, leading to a
low recall. In addition, our testing data such as RS and Retina
involving low-overlapped areas or non-rigid deformations are
different from the training data of LFGC typically suffer from
large scale or viewpoint changes, and the LFGC requires
additional ground truth camera intrinsics as input for data
normalization, which are not available in our testing data. LPM
has high recall, but its precision is badly degraded in case of
low initial inlier ratio either. In contrast, our LMR clearly has
the best precision-recall trade-off. In addition, our LMR is also
quite efficient, and its average runtime on the four datasets is
much less than the other state-of-the-art competitors except
for GMS, LFGC and LPM.

3) Robustness and Generality Test: We further report the
robustness and generality of our LMR. We consider four
scenarios for evaluation: i) different degrees of deformation;
ii) different types of supervised learning technique; iii) testing
data with different feature descriptors for putative match
construction; iv) different scales of training data.
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Fig. 7. Different degrees of deformation in 9 scenes. The first 4 rows are
selected from the VGG [90] dataset, the fifth and sixth rows come from
DAISY [88], and the next two rows are chosen from DTU [89], and the
last row is collected by ourselves. From left to right, the deformation degree
increases gradually comparing to the first column.

To this end, we first test our method on a group of images
with five different degrees of deformation, which includes
8 scenes selected from VGG [90], DAISY [88] and DTU [89],
and 1 scene collected by ourselves, as shown in Fig. 7. Note
that the images from the second to the last columns are
considered as an increasing degree of deformation comparing
to the first column. We pairwise the first and the rest images,
resulting in 5 image pairs for each scene. We adopt the
F-score to characterize the matching performance defined as
the harmonic mean of precision and recall [91]: F-score =
2·Precision·Recall/(Precision+Recall). The mean value and
standard deviation of inlier ratio and F-score of all methods
with respect to deformation degree are demonstrated in Fig. 8.
Clearly, we see that our LMR consistently achieves the best
performance over all the other state-of-the-art competitors.

Next, we consider the rest three scenarios. The three widely
used supervised learning techniques such as RF, SVM and
BPNN and three widely used feature descriptors such as SIFT,
speeded-up robust features (SURF) [92], and oriented FAST
and rotated BRIEF (ORB) [93] are adopted for quantitative
evaluation. In addition to the four datasets in Fig. 6, we use the
VGG dataset involving all the 40 image pairs as well. For each
pair, we set the SIFT distance ratio threshold as 1.5 or 1.0 to
construct the VGG-SFIT putative set, use the top 60% or 40%
similar SURF descriptors as our VGG-SURF putative set,
and select the top 1,000 or 2,000 correspondences as the
VGG-ORB putative set. The ground truth correspondences

Fig. 8. Quantitative comparison on different degrees of deformation shown
in Fig. 7. From left to right: mean and standard deviation of inlier ratio and
the F-score of eight methods.

are established according to the ground truth homographies
supplied by the dataset. Furthermore, we also change the scale
of training data, e.g., 5, 10 and 20 image pairs with 4,391,
7,659 and 15,883 training samples, respectively.

The average F-scores of the 7 competitors and the 3 learning
techniques with 3 different scales of training sets for our
LMR on each dataset are summarized in Table I. We see that
our LMR can achieve the best performances on all datasets
including the VGG dataset with different feature descriptors.
By fixing the scale of training data, the performance of the
three supervised learning techniques are quite similar, where
none of them is obviously better than the others. In particular,
with only 10 image pairs to construct the training samples, our
LMR can generate a reliable classifier and achieve promising
results. For different scales of training data, using 10 image
pairs for training performs better than using 5 image pairs,
and the performance of using 20 image pairs is not improved
much, even degrades in some cases. This is because the
selected 10 image pairs are representative to generate good
performance for non-deep learning techniques, and adding
another arbitrary 10 image pairs for training may introduce
additional noise, especially when the classifier’s performance
becomes saturated. From the results in Table I, we can draw a
conclusion that our LMR is general and does not rely on any
specific learning technique, feature descriptor, or large scale
training data, to improve the matching performance. Note that
the training sample of our LMR is quite different from that
of the deep learning-based method LFGC [72]. Specifically,
a training sample is just a putative match in our LMR, but a
whole putative set in LFGC.9 This is why our LMR requires
only 10 image pairs but LFGC requires thousands of image
pairs for training.

B. Results on Visual Homing

It has been verified that the presence and amount of false
matches injure the robustness of a visual homing method [94].
Therefore, some heuristic methods expect improvement from
removing false matches. In our evaluation, we replace the
feature matching strategies with our LMR in several com-
monly adopted homing methods, and test the difference of
the homing performance. The involved methods are homing
in scale-space (HiSS), bearing-only visual servoing (BOVS),
and scale-only visual servoing (SOVS) from [84], as well

9The LFGC needs a whole putative set to estimate the camera intrinsics.
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TABLE I

AVERAGE F-SCORE OF OUR LMR AND 7 COMPETITORS ON RS [87], Retina [11], DAISY [88], DTU [89] AND VGG DATASETS [90]. FOR VGG,
WE USE 3 DESCRIPTORS SUCH AS SIFT, SURF, ORB TO CONSTRUCT PUTATIVE MATCHES AND TERMED AS VGG-SIFT, VGG-SURF AND

VGG-ORB, RESPECTIVELY. FOR EACH DATASET, THE AVERAGE INLIER NUMBER (AIN) AND AVERAGE INLIER RATE (AIR) ARE SHOWN

IN THE SECOND AND THIRD ROWS, FOLLOWING ARE THE RESULTS OF 7 COMPETITORS. FOR OUR LMR, WE CHANGE THE SCALE

OF TRAINING DATA WITH 5, 10 AND 20 IMAGE PAIRS INVOLVING 4,391, 7,659 AND 15,883 TRAINING SAMPLES, AND
USE DIFFERENT TYPES OF SUPERVISED LEARNING TECHNIQUE FOR TRAINING. IN PARTICULAR, LMR-RF-5

MEANS THE CLASSIFIER IS TRAINED USING RANDOM FOREST WITH 5 TRAINING IMAGE PAIRS. BOLD

INDICATES THE BEST RESULT

Fig. 9. Matching results of LMR on two typical panoramic pairs.

as scale and bearing visual servoing (SBVS), and simplified
scale-based visual servoing (SSVS) from [13]. In addition,
the LPM [4] is also used to replace the matching strategies
in these methods for comparison.

We choose the A1originalH scene, a widely used panoramic
image database for visual homing,10 for quantitative evalua-
tion. It consists of 170 omni-directional and unwrapped images
captured in an indoor environment with ground truth captur-
ing positions. Four metrics including total average angular
error (TAAE), minimal error (Min), maximal error (Max) and
standard variation of error (StdVar) as in [13] are employed to
measure the performance. For all the metrics, smaller values
indicate better results.

Figure 9 depicts the matching results on two typical image
pairs from the dataset, from which we see that all the inliers
and outliers on the two examples are correctly identified. Note

10http://www.ti.uni-bielefeld.de/html/research/avardy/index.html

TABLE II

VISUAL HOMING ERROR STATISTICS OF DIFFERENT METHODS

ON A1originalH DATASET. BOLD INDICATES THE

BEST RESULT (UNIT: DEGREE)

that there are several inliers across the whole images and
our method can also correctly identify them. This is because
the scenes are panoramic images and we have replaced the
Euclidean distance by the cylinder distance [3] for neighbor-
hood construction. The homing vector errors on the whole
dataset are listed in Table II. Clearly, our LMR can consistently
improve the state-of-the-art, due to its ability of generating
more accurate feature matches.

C. Results on Near-Duplicate Image Retrieval

Finally, we test our LMR for near-duplicate image retrieval
on the California-ND dataset [95]. All the categories with
10 or more images are enlisted, and for each category
10 images are randomly selected for quantitative evaluation,
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Fig. 10. Precisions (left) and recalls (right) with respect to R N ,
i.e., the required number of images to be retrieved for a given image.

resulting in 7, 140 image pairs in total. The matching algo-
rithms on all the 7, 140 image pairs are executed and the
number of preserved matches is employed to measure the
similarity between two images. A ranked list for each given
image according to its similarities with every other image in
the dataset is returned. The performance is characterized by
precision and recall based on the ranked lists. The precision is
valid only for RN ≤ 10 and the recall is valid for RN ≥ 10
with RN denoting the number of retrieved images.

The precision and recall curves of RANSAC, ICF, GS,
MR-RPM, GMS, LFGC, LPM and our LMR are provided
in Fig. 10. Our LMR evidently outperforms all the other
methods in both precision and recall, followed by LPM.
Specifically, the average retrieved correct image numbers of
RANSAC, ICF, GS, MR-RPM, GMS, LFGC, LPM and our
LMR for RN = 10 are approximately 8.94, 5.54, 8.13, 8.71,
8.24, 7.83, 8.99, and 9.11, respectively.

VI. CONCLUSION

In this paper, we proposed a novel learning-based approach
to identify inlier and outlier for local feature matching. It is
able to produce a general classifier to determine the cor-
rectness of an arbitrary putative match within linearithmic
time complexity. The qualitative and quantitative results on
general feature matching as well as two real-world tasks
demonstrate the superiority of our strategy over state-of-the-
art competitors in terms of both accuracy and efficiency.
In addition, thanks to the generality, our method can also be
used to provide a good initialization for more complicated
problem-specific matching algorithms which rely on certain
special transformation models.
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