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Abstract— As a fundamental and critical task in feature-based
remote sensing image registration, feature matching refers to
establishing reliable point correspondences from two images of
the same scene. In this article, we propose a simple yet efficient
method termed linear adaptive filtering (LAF) for both rigid
and nonrigid feature matching of remote sensing images and
apply it to the image registration task. Our algorithm starts
with establishing putative feature correspondences based on local
descriptors and then focuses on removing outliers using geometri-
cal consistency priori together with filtering and denoising theory.
Specifically, we first grid the correspondence space into several
nonoverlapping cells and calculate a typical motion vector for
each one. Subsequently, we remove false matches by checking the
consistency between each putative match and the typical motion
vector in the corresponding cell, which is achieved by a Gaussian
kernel convolution operation. By refining the typical motion
vector in an iterative manner, we further introduce a progressive
strategy based on the coarse-to-fine theory to promote the
matching accuracy gradually. In addition, an adaptive parameter
setting strategy and posterior probability estimation based on the
expectation-maximization algorithm enhance the robustness of
our method to different data. Most importantly, our method is
quite efficient where the gridding strategy enables it to achieve
linear time complexity. Consequently, some sparse point-based
tasks may inspire from our method when they are achieved
by deep learning techniques. Extensive feature matching and
image registration experiments on several remote sensing data
sets demonstrate the superiority of our approach over the state
of the art.

Index Terms— Adaptive,
filtering, outlier, registration.

convolution, feature matching,

I. INTRODUCTION

MAGE registration, which aims to geometrically warp
the sensed image into the spatial coordinate system of
the reference image and align their common area pixel-to-
pixel, is a fundamental and challenging problem in remote
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sensing and photography community [1]. The images to be
registered are usually taken from the same scene and captured
at multitemporal, from multiviewpoints or multimodalities.
Many remote sensing tasks, such as image mosaic, image
fusion, change detection, and map updating, are performed
on well-registered images, leading to an urgent requirement
for efficient and robust registration methods [2]-[7].

During the last decades, a growing amount and diversity of
methods are proposed for remote sensing image registration,
particularly when the deep learning techniques are widely
used in recent years. These methods can be roughly classified
into three categories, saying area-, feature-, and learning-based
methods [1], [8]. Area-based methods register two images
by using the similarity measurement of the original pixel
intensity or information after domain transforming. This is
implemented using sliding windows of predefined size or even
entire images, without attempting to detect any salient objects.
Feature-based methods start with detecting the sparse and
salient features from two images and then establish reliable
correspondences under similarity of local image descriptors
and/or spacial geometrical constraints. As for learning-based
methods, due to the strong ability in deep feature acquisition
and nonlinear expression, applying deep learning techniques
for image information representation, similarity measurement,
and parameters regression has received considerable attention
recently [8], [9].

According to the basic idea, area-based methods can achieve
better performance when the images have few prominent
details, where the distinctive information is provided by pixel
intensities rather than local shapes and structures. However,
they badly suffer from the high computational complexity,
image distortion, and intensity changes. These handicaps are
typically introduced, for instance, by noise, varying illumina-
tion, and imaging from different sensors. By contrast, since the
features, such as points, lines, and salient regions [10]-[12],
can be seen as a simplistic representation of an image, feature-
based methods are generally more efficient and robust to
complex image distortions. Therefore, salient features have
been widely used in remote sensing tasks. In addition, points
can be regarded as the basic form of other features, and hence,
they are more general and easy to extract and define. The
learning-based methods are not so well studied, particularly
for sparse feature matching. The existing methods can merely
handle the large overlapped image pairs within slight rotation,
scaling, and nonrigid deformation. However, they have shown
great potential in the image registration task. In this article,
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we mainly focus on point feature-based methods for remote
sensing image registration. Specifically, we first establish
accurate feature point correspondences and then estimate a
predefined transformation between two images accordingly.
Subsequently, the sensed image is aligned with the reference
image by using an appropriate interpolation method [1].

Feature-based methods typically desire a robust and effi-
cient matching strategy to establish correct correspondences
between two feature point sets. This stimulates various meth-
ods for better performance in efficiency and accuracy in the
past decades. Nevertheless, there are still several challenges to
develop a general and efficient matching technique for remote
sensing image registration. First, an efficient technique is in
urgent need in large-scale remote sensing tasks, for the reason
that matching N points to another N points would create
the computational cost of O(N!) due to its combinatorial
nature [13], [14]. Very often, thousands of feature points are
extracted and to be corresponded for large or high-resolution
remote sensing images, leading to a significant burden on
the existing matching methods. Second, a more complex
nonrigid transformation modeled in high dimension is required
for an accurate alignment. This is because some inevitable
local distortions caused by ground surface fluctuation and
imaging viewpoint variations are usually contained in remote
sensing images, which severely restricted their matchability if
merely using a simple transformation (such as rigid or affine)
model. Third, the putative match set inevitably involves a
large number of false matches due to the only use of local
descriptors, which is even worse for the complex nature of
remote sensing data, such as unavoidable noise, occlusions,
repeated structures, and so on. Therefore, a robust mismatch
removal approach is required to seek as many correct matches
as possible while keeping the mismatch to a minimum.

To address the abovementioned challenges, in this article,
we propose a simple yet efficient approach for remote sensing
image registration namely linear adaptive filtering (LAF),
which can handle both rigid and nonrigid transformations
within linear time and space complexity. In particular, our
algorithm starts with gridding the putative correspondence
space and calculating an average motion vector for each cell,
which can convert the sparse points into convolutable Euclid-
ean data. Then, the Gaussian kernel convolution operation
is utilized to enhance the connection among the neighboring
cells and obtain a typical motion vector for each cell. Finally,
the outliers are removed by checking the consistency between
each putative match and the corresponding typical motion
vector through a threshold. To improve the matching accuracy,
we introduce a progressive matching strategy to iteratively
refine the typical motion vectors. In addition, an adaptive
parameter setting strategy and posterior probability estima-
tion based on the expectation—maximization (EM) algorithm
enable our method to be robust to different data. Furthermore,
extensive feature matching and image registration experiments
with qualitative and quantitative result analyses have shown
a significant superiority of our method over state-of-the-art
competitors.

Our method has the following three advantages. First,
the proposed method does not require a predefined
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transformation model as many existing methods do, which is
more general and can handle both rigid and nonrigid image
deformations. Second, the nonorder points (i.e., non-Euclidean
data) are converted into a convolutable matrix (i.e., Euclidean
data) [15], and hence, we can handle the outliers with a
convolution operation, which provides a guide to address the
feature matching problem and other sparse point-based tasks
using deep learning techniques in the future. Third, the grid-
ding strategy enables our method to achieve linear time and
space complexity and fulfill the matching problem in dozens
of milliseconds even the putative set contains thousands of
matches. This is beneficial for addressing large-scale and real-
time remote sensing tasks.

This article is an extension of our previous work in [16],
and the primary new contributions include the following three
aspects. First, we introduce an efficient strategy for adaptive
parameter setting and propose the posterior probability esti-
mation under a maximum-likelihood framework, which can
improve the robustness of our method. Second, we improve the
strategy of convolution, which avoids the calculation of density
in our previous method and thus can save the computation
cost. Third, we generalize the proposed method to address the
remote sensing image registration problem, with the thin plate
spline (TPS) [17] being chosen for transformation estimation.

The remainder of this article is organized as follows.
Section II describes the necessary background material and
related work. In Section III, we present our LAF algorithm
for remote sensing image registration. Section IV illustrates
the matching and registration performance of our method in
comparison with other approaches on different types of remote
sensing images, followed by some concluding remarks in
Section V.

II. RELATED WORKS

Registration between two or more images is a critical
and fundamental process and has been widely used in var-
ious fields, including computer vision [14], [18]-[21], pat-
tern recognition [22]-[24], image analysis [4], [25], security
[5], [26], and especially in the field of remote sensing [3],
[26]-[28]. Comprehensive and exhaustive reviews about image
registration are summarized in [1] and [30]-[32]. According
to the abovementioned in Section I, image registration is
generally divided into three categories, i.e., area-, feature-,
and learning-based. In the following, we will give a brief
introduction of these three major types of methods, particularly
in the remote sensing community.

A. Area-Based Methods

Area-based methods typically register two images based
on directly matching image intensities or domain transformed
information in a sliding window of predefined size even the
entire image. These methods can be broadly classified into
three types: correlation-like methods, domain transformation
methods, and mutual information (MI) methods [1], [3].

As a classical representative in area-based methods,
correlation-like methods correspond two images by maximiz-
ing the similarities of two sliding windows [32]. In remote
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sensing applications, the maxima correlation of wavelet fea-
tures has been developed for automatic registration [33].
However, the method of this type may suffer a lot from
the serious image deformations (only be successfully applied
when slight rotation and scaling occur), the windows con-
taining a smooth area without any prominent details, as well
as its huge computing burden. Domain transformed methods
tend to align two images based on converting the original
images into another domain, such as phase correlation based
on Fourier shift theorem [34]-[38] and Walsh transform-based
methods [39], [40]. The applications of such methods to
remote sensing are depicted in [41]. Such kinds of methods are
more robust against the correlated and frequency-dependent
noise and nonuniform, time-varying illumination disturbances.
However, they have some limitations in the case of image
pairs with significantly different spectral contents and small
overlap area. Finally, deriving from the information theory,
the MI is a measurement of statistical dependence between two
images and works with the entire image [42], e.g., nonrigid
image registration using MI together with B-splines [43] and
conditional MI [44]. Therefore, MI is particularly suitable for
registration of remote sensing images captured from differ-
ent modalities [45]-[47]. However, the disadvantage of MI
refers to the difficulty of determining the global maximum
of the entire searching space, which inevitably reduces its
robustness.

B. Feature-Based Methods

In order to address the challenges in efficiency and robust-
ness of image registration, feature-based methods have been
extensively studied [1], [48]. These methods commonly start
with extracting stable physical features (usually are interest
points or key points) and establishing preliminary correspon-
dences through the similarity of descriptors, then remove the
false matches from putative correspondence sets using extra
geometrical constraints, simultaneously estimate the transfor-
mation, and align overlapped area of two images.

In the first stage, i.e., constructing putative correspondence
sets based on similarity of local descriptors, traditional meth-
ods are well-known as scale-invariant feature transform (SIFT)
[49], speeded up robust features (SURFs) [50], and oriented
FAST and rotated BRIEF (ORB) [51]. These classical feature
matches have been proven to be both efficient and robust
and widely used in various fields. In terms of the unique
nature of remote sensing images such as intensity changes and
multimodal, Dai and Khorram [52] proposed a feature-based
method using improved chain-code representation combined
with invariant moments, and Li et al. [53] addressed the
multimodal image matching problem using radiation-invariant
feature transform. In addition, other SIFT improvements [54],
[55] or multiple features [56] are also used for remote sensing
images. Although there have been various approaches for
putative feature correspondence construction, the use of only
local appearance information will unavoidably result in a large
number of false matches. The problem becomes more severe
when images undergo serious nonrigid deformation, extreme
viewpoint changes, low quality, and/or repeated contents.
Therefore, in the second stage, a robust and efficient mismatch

elimination method is needed to detect and remove the
outliers.

In order to eliminate mismatches and preserve the true
matches, numerous methods have been proposed during the
past decades. The most classic methods for this task may be
resampling-based methods, such as random sample consensus
(RANSAC) [57] and its variants [58], [59]. The common
idea of these methods is to find the smallest consistent inlier
set to fit a given geometric model following a hypothesize-
and-verify strategy. However, resampling-based methods suf-
fer a lot and even fail in the case that the two images
undergo nonrigid or other complex deformations. From this
point, several nonparametric techniques have been developed,
such as identifying correspondence function (ICF) [60] and
other nonparameter modeling methods with high-dimensional
representation [61], [62]. Methods of this type typically
tend to estimate the nonrigid model and remove the out-
liers simultaneously, which have shown promising match-
ing results in both rigid and nonrigid image deformations.
However, the optimal solution will be challenging to deter-
mine due to the vanishing smooth priori and the large
search space when putative match sets are contaminated by
heavy outliers and/or image pairs contain large discontinuous
motion, for instance, image pairs captured from wide base-
line and images containing multitargets with different motion
attributes.

In addition, graph matching-based methods are widely
studied as well, which usually formulate the matching prob-
lem as a quadratic assignment problem to seek the maxi-
mum inlier set with subgraph isomorphism theory [63]-[66].
Some representatives methods of this type include graph
shift (GS) [67], graduated consistency regularization [68],
and so on. Nevertheless, it is extremely slow for graph
matching methods because of their high computational costs,
leading to the low applicability for a large-scale match-
ing problem. Recently, several approaches based on locality
or piecewise consistency assumption are proposed for fast
matching, such as grid-based motion statistics [69], locality
preserving matching [14], [70], feature matching using spa-
tial clustering with heavy outliers [24], and learning-based
methods [71], [72] (will be introduced in Section II-C). These
methods are quite efficient with low computation complexity
but cannot work well when the putative set involves
a large number of outliers and/or inliers are distributed
dispersedly.

As for the applications in remote sensing, there have also
been a variety of feature matching methods. For example,
a general framework for both rigid and nonrigid registra-
tions is widely studied, including locally linear transforming
(LLT) [6], multiscale locality and rank preserving method
namely mTopKRP [73], and a guided strategy with the high
rate but less number of inliers to obtain more reliable feature
correspondences [74]. In addition, Wen et al. [75] introduced
a unified feature matching criterion by combining spatial
consistency and feature similarity. Li et al. [76] used support-
line voting to remove false matches and subsequently refine the
matching results with affine-invariant ratios. Other strategies
also include graph matching-based methods [77].
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C. Learning-Based Methods

Learning-based approaches are actually covered in area-
and feature-based methods. They can be regarded as a direct
replacement of traditional methods in information extrac-
tion and representation, as well as similarity measurement.
Broadly speaking, three strategies are prevalent in current
works: 1) training a convolutional neural network (CNN)
model to estimate a similarity measure for two images to
drive an iterative optimization strategy [78]; 2) to directly
predict transformation parameters using deep regression net-
works [79], [80]; and 3) learning to substitute one or
more processes of traditional feature-based methods such
as SIFT, e.g., key points detection and description as well
as similarity metric measure and matching [81]-[83], more-
over establishing sparse point matching from raw images
in an end-to-end manner [84]. Details are well surveyed in
studies [8], [85].

Learning strategy is widely used in remote sensing images
as well and mostly registers directly on image patch pairs with
deep features or metric learning. For example, Wang er al. [86]
proposed an end-to-end architecture to learn directly between
patch pairs and their matching labels for later registration.
Yang et al. [87] proposed a CNN feature-based multitemporal
remote sensing image registration method by learning for
multiscale feature descriptors and gradually increasing the
selection of inliers to improve the registration performance.
Another strategy is to register two images using both hand-
crafted and deep features [88], [89]. This type of learning-
based method is more robust to noisy and textureless images.
However, they still suffer from the serious deformation and
nonrigid transformation, due to the lack of generalization of
model and the insufficient training samples.

In addition, learning-based mismatch removal methods have
been developed gradually in recent years. Yi et al. [71] made
a first attempt to introduce a learning-based technique termed
learning to find good correspondences (LFGCs). It aims to
train a network from a set of sparse putative matches together
with the image intrinsics under the rigid geometrical transfor-
mation constraints, label the test correspondences as inliers
or outliers, and output the camera motion simultaneously.
However, LFGC may sacrifice many true correspondences to
estimate the motion parameters and fail to handle general
matching problems, such as deformable and nonrigid image
matching. To this end, Ma et al. [72] proposed a general
framework to learn a two-class classifier for mismatch removal
namely LMR. This method can generate promising matching
performance with linearithmic time complexity on arbitrary
data, but it may preserve bizarre and obvious false matches due
to its limited match representation. Generally speaking, it is
quite difficult to apply the CNNs well onto sparse point sets for
the points classification, mismatch removal, or corresponding.
The major reason is that point data, also called non-Euclidean
data [15] as their unordered and dispersed nature, are challeng-
ing to operate and extract the spatial relationships between two
or more points (e.g., neighboring elements, relative positions,
length, and angle information among multipoints) using a deep
convolutional technique.
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II1. METHOD

This section describes an efficient feature matching method
for registering two remote sensing images of the same or
similar scenes. To this end, we start by constructing a set
of putative matches with the similarity of feature descriptors
such as SIFT [49]. Then, the matching task boils down
to rejecting the false matches from the given putative set
using extra geometrical constraints and smooth priori. Sub-
sequently, by using the preserved reliable feature correspon-
dences, the transformation between the two given images can
be estimated accordingly.

A. Problem Formulation

Given the sensed image I and reference image I’ of the
same scene or object to be registered, suppose that we have
obtained a set of N putative matches S = {(x;,y:)},, where
x; = (u,0)T and y; = (',0)T are the pixel coordinates
(i.e., extracted feature points) of I and I’, respectively. Let F
indicate the transformation or mapping function from x to y,
and then, for any true match (x;,y;), we have y; = F(x;).
However, the putative set S is inevitably contaminated by
some unknown noise and outliers, which strongly encourage us
to remove the outliers and establish accurate correspondences.
To this end, a general assumption is that the noise on inliers is
isotropic Gaussian with a zero mean and a covariance matrix
o’l, ie., y; — F(x;) ~ N(0,0%I), where 0 is a 2-D vector
of zeros and I is a 2 x 2 identity matrix, and the outlier is
random uniform distribution of 1/a [6], [58], where a is the
area of output in reference image. Thus, the mixture model
can be formulated as the following form:

y lyi—Fapl?
e 202

1—y
2ro? + a
where parameter set § = {F, 62, y} with y being the mixing
coefficient. Let X = (x1,...,xy)T and Y = (yy,...,yn)" be
the N x 2 matrix representing the extracted two feature sets,
respectively. By taking the assumption that the data satisfy
independent and identically distributed (i.i.d.), the likelihood
function can be written as

pyilx;, 0) = (1)

N
p(YX,0) =[] p(vi. Ixi. 0). )
i=1
Then, the maximum-likelihood estimation of parameter set
can be converted as the following minimization form:

N
£©O)=—Inp(Y|X,0) == Inpyilx,0). ()
i=1

B. LAF

From the formulation aforementioned, we can find that it
is extremely difficult to directly seek the global minimum of
the negative log-likelihood function (3) to obtain the optimal
parameter set 6. The estimation of transformation F may
require the cubic computation complexity, and it is usually
calculated repeatedly in an iteration way [6], [61], leading to
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Fig. 1. Proposed progressive filtering framework for robust feature matching. Second row: main body. There are three steps in each iteration indicated with
cascaded colored plates, saying match space gridding (yellow), kernel convolution to generate typical motion field (cyan), and motion consistency checking or
motion deviation calculation (purple). Putative matches with the deviation under a given threshold 1 will be preserved as the input in the next iteration, which
is just used for typical motion field generation, and the motion deviations are still calculated based on the entire putative set. First row: enlarged separability
of motion consistency between inliers and outliers using iterative filtering strategy. Third row: gridding and convolution results in the first and last iterations.
For a better visibility, at most 100 randomly selected matches are presented in the input and output image pairs, and motion vectors are displayed with a

quarter of their actual length in the third row. Blue: inlier. Red: outlier.

a huge computation burden in actual applications. Moreover,
severe outliers and serious deformation can invalidate the
whole process due to the difficulty in finding the optimal
solution. To this end, based on the smooth priori of potential
correct matches, we reformulate the mixture model in (1) and
the target function in (3) as an approximate form without a
predefined and the heavy computation of F, hence reducing
it to linear complexity.

1) Problem Approximation: According to image denoising,
when given a noisy image, the common idea is to consider the
pixels in a local area (determined by the convolution kernel
size) comprehensively, such as mean or median operation,
to update and obtain the true pixel intensity and filter the
Gaussian or salt noise. Similarly, by transforming the putative
match set S into &' = {(x;, m)}Y, with m; = y; — x;
denoting the motion vector of match (x;, y;), then the potential
true matches tend to be regular and smooth, i.e., geometrical
c:onsistency1 [14], [69]. In this way, it is feasible to calculate
the average motion vector on the potential true matches in
a small region and reject the false matches by checking the
deviation between each putative motion vector and the average
motion vector based on the consistency.

IThe geometrical consistency denotes that the correct matches should have
a similar motion behavior, as least in local neighborhoods, whereas the false
matches are usually randomly distributed, seen the motion behavior in Fig. 1
or 3 for example.

To this end, we divide each dimension of feature points
X = {x;}", into n. nonoverlapping parts equally and obtain
G = n. x n. cells. Accordingly, the putative set S" can be
divided into G parts with X = {C j,k};l'fk=1’ which is shown as
the gridded _putative motion vectors in Fig. 1 (n, = _20). Also,
we denote M as the average motion matrix, where M ; is the
average motion vector in the (j, k)th cell determined by

1 .
c E m;, if |Cj,k| >0
Mj,k = | ]’k| i|x;€Cjx

0,

“4)
if |Cji] = 0.

Next, we convert the problem formulation into the following
approximation form:

Vi— Fx) = (yi —xi) — (F(xi) — x;)

=m; — (F(x;) —x;) (5

where F(x;)—x; & M ik> Vi, X; € Cj holds, particularly when
M is calculated by only inliers and 7, is large. Thus, we can
obtain y; — F(x;) ¥ m; — M, x; € Cj. From this point,
with @ = {62, y}, we can approximate the mixture model as
follows:

llm; =N 4 1> 1—
p(yilx;, 0) ~ zﬂyaze* t p ’ Vi,x; € Cjx. (6)

By using (6) and (3), we can find the optimal solution of 8*;
in particular, there is no need to estimate the transformation
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JF in this process. Therefore, the problem is converted into
the estimation of average motion matrix M that is ideally
calculated only based on potential true matches. To this end
and following the filtering strategy, we define the motion
deviation as {¢;, = m; — Mj,k,\ﬁ,x,' € Cj,k}f\':l. Therefore,
e; has a similar distribution assumption with y; — F(x;), i.e.,
e ~ N(0,06°I),i € Nigier; & ~ U(=bLbI),i € Noyier
where the random uniform distribution ¢ with probability
density 1/a [6], [58], with a = 2b x 2b; I is a unit matrix,
and Niier and Ngygier denote inlier set and outlier set in
S, respectively. Based on the distribution difference between
inliers and outliers, we can remove the false matches with a
specified filter.

Nevertheless, there are still two limitations in the aforemen-
tioned strategy. On the one hand, for an isolated sample, i.e.,
x; € Cjx and |Cj x| = 1, then Mj,k = m;, and the deviations
may keep being zero for both true and false matches, thus
easily leading to some misjudges. On the other hand, the con-
nections among the neighboring cells may be neglected if only
using the average operation in a single one, which may badly
degrade the consistency of potential true matches particularly
when there exist numerous outliers (which often occurs in
the feature matching problem). Therefore, in the following,
we propose an efficient filter strategy with a Gaussian convo-
lutional kernel to recover the true motion field and remove the
outliers simultaneously.

2) Convolution Operation: In order to utilize the interaction
among neighboring cells, we consider the local n; x n; cells
comprehensively according to the convolution theory. The
convolution f(®) of putative motion vectors is defined as

_(W-M)®K

f(®):M= WoK+e @)

where M is the generated n. X n, x 2 matrix after Gaussian
kernel convolution, with M;; the typical motion vector of
cell (j,k) and W a count matrix with W;; = |C;«|. The
denominator in (7) is used for weight compensating to preserve
the scale of convolution results, and ¢ is an infinitesimal
positive number in case that there exists 0 in W ® K. K is
a Gaussian kernel distance matrix of size n; x ng, which is
defined as

_ exp{—D; ;}
E;lil 'jlk:1 exp{—D; ;} ’

where s;; = (i, j)T and s* = ([ng/2], [nk/21)7 are the
corresponding position and the central position in the con-
volutional kernel K, respectively, and [-] rounds the element
to the nearest integer not less than itself. Therefore, n; must
be a positive odd number.

In addition, to avoid the influence of isolated samples, we do
not take the isolated one into account during convolutional
procedure by subtracting the corresponding average vectors
and adjusting the weight in each cell and hence (7) can be
rewritten as

Ki;

Dij=llsi,; —s*ll2 ()

F(@): M= (W-M)® K —M - K*

WK -BW)-K*+¢ ©)
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where B(W) indicates the binary form of W with the values
being 0 or 1, B(W; ;) = 1 only when W; ; > 0, and K* means
the center element, i.e., K* = K, 21,1, /21-

After the convolution, we obtain the typical motion vector
of each cell, as shown by the cyan color vector located in the
center of each cell in Fig. 1. Then, we define the deviation
between m; and the corresponding M ; and constraint them
between 0 and 1 with
m; — M, .|

B2
where f is used for determining the width of the range of
interaction between two motion vectors, and we empirically
set f? = 0.08. Thus, the inlier set Z* can be approximately
detected by comparing the deviation and a given threshold A

7" ={(xi,yi) : di < 4,i € Ny}. Y

3) Progressive and Adaptive Filtering: From Fig. 1, we can
find that the margin between inliers and outliers is not so
separable (as shown in Iteration 1), and only a part of false
matches can be filtered out by threshold 4;. Ideally, if the
typical motion vectors are constructed only by inliers, then the
deviation of inliers and outliers will almost tend to 0 and 1,
and therefore, we can separate inliers and outliers more easily
and accurately. Nevertheless, the ground truth inliers are not
available in advance. To solve this dilemma, we propose an
iteration strategy to remove outliers progressively. It iteratively
refines the typical motion vector and anneals the threshold 4
based on the coarse-to-fine theory. The inlier set is approx-
imated with the results of each iteration until convergence.
As shown in the first line of Fig. 1, the deviation margin
between inliers and outliers has been distinctly enlarged as the
iteration proceeds. By the way, it is enough to obtain reliable
matching performance within five iterations with 4 being 0.8,
0.2, 0.1, 0.05, and 0.035 in each iteration, respectively. Even
so, there are still some outliers that their motion deviations d
are close even mixed to inliers, leading to the sensitivity of
parameter A. This is because a small number of outliers are
slightly deviated from the correct position and may keep weak
consistent with the typical motion vectors. Moreover, some
false matches, with small lengths of their motion vectors, may
cause small deviation when the according cells do not contain
any true matches, i.e., M;; = 0.

By now, we have formulated the feature matching problem
into a convolution filtering task. However, there are several
hyperparameters, i.e., {n., ng, A}, seriously affecting the filter-
ing results, due to that the optima parameter 4 may change
largely with respect to the values of n,. and ny, especially
the rotation and scaling as well as some complex nonrigid
deformations between two images. Therefore, we test it using
randomly selected 50 remote sensing image pairs with dif-
ferent types of transformations involving rigid, rotation, scale
changing, and nonrigid deformations, and so on.

First, we give the motion deviation [calculated by (10)]
statistics of inliers and outliers with respect to 12 combinations
of (n.,ng) in the left plot of Fig. 2, where n. ranges from
10 to 40 with interval 10 (denoted by four colors) and ny
ranges from 5 to 9 with the interval of 2 (denoted by three

di=1—exp{— }ovi, x;€Cix (10)
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x10° x10° Algorithm 1: LAF Algorithm
—(10,5) --(10,7) (10,9) —Tr -
I Do S o —Scaling Input: Putative set S = {(x;, y;)}\,, parameters 1, 7
= L@ @07 @ | 2 Output: Inlier set Z
3 ".‘,_‘:::’:t":”(::’"k) 3 1 Initialize the inlier set as the whole set S;
208 208 2 Set the parameters n., n; and K using Egs. (12) and
& (8);
0 =" 0 Convert S into &’ and gridding;
(1] 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 . .
Motion Deviation Motion Deviation Iteration: . _ .
Fig. 2. Probability distributions of motion deviations [calculated by (10)] Construct matrices M and W using Eq. (4);

for inliers and outliers with respect to different combinations of n. and ny,
as well as different types of image deformations. The results are obtained
on 50 selected representative remote sensing image pairs. (Left) Using four
colors to indicate different n., and using full line, chain line, and dotted line
to indicate nxy =5, 7, and 9, respectively, whereas the blue line (the last one
in the legend) indicates the adaptive setting of (1., ng). (Right) Distributions
of putative matches on different types of image deformations that are divided
from the selected test data. For each figure, the inliers are indicated with the
downward-trend lines and outliers with upward-trend lines. The cross point
of inlier line and outlier line, with the same color and type, denotes the best
choice of parameter A, and the cross point located closer to the lower left
corner means better separability between inliers and outliers.

line types, i.e., full line, chain line, and dotted line). Note that
line with the downward trend means inlier statistic, whereas
the upward trend means outlier statistic. The optimal parameter
A of each group of (n.,ny) is the cross point of probability
curves of inlier and the according outlier, i.e., two lines with
the same color and type. The cross point closer to the lower
left corner indicates the better separability between inliers and
outliers. From the left plot of Fig. 2, we can find that the
motion deviation statistic of outliers is almost unchanged with
respect to different values of gridding size n. and kernel size
ny, just as the upward-trend curves shown. While the curves of
inliers (downward-trend) become lower left when increasing
n. and n;. However, the superiority may become smaller
when n, increases to 30; instead, larger n, will increase the
computation burden. Therefore, according to the relationship
between n. and scale of the putative match set, ie., N,
we assume that the average number of putative match located
in one cell must not be less than 1, but constrains it between
15 and 30 due to the robustness and efficiency

n. = min{max{[+/N1, 15}, 30}

ni = odd(n./3) (12)

where N is the number of putative set, [-] rounds the element,
and odd(n./3) means the nearest odd number not greater than
n./3. By using the adaptive setting of n. and ny, the margin
between inliers and outliers may be largely enlarged, as the
blue curve shown in the left plot of Fig. 2.

In addition, the best choice of A may change a lot with
respect to different types of image deformations, as shown
in the right plot of Fig. 2. The experiment is conducted
by dividing the 50 test image pairs into five groups, saying
translation, scaling, rotation, nonrigid, and all included, from
which we can see that different types of image deformation
may result in great differences of these cross points, meaning
that it requires deferent optimal A, especially in the situation
of the rotation and nonrigid. This is because the distribution
parameters, i.e., the covariance of inliers, may vary with
different image data, and hence, it requires us to identify the

Calculate the deviations using Eq. (10);
Initialize the posterior probability using Eq. (13);
Estimate 2 and y using Egs. (14) and (15);

10 Calculate probability p; using Eq. (16);

11 Determine Z using Eq. (17);

12 Until convergence,

13 Return 7.

3
4
5
6 Calculate matrix M using Eq. (9);
7
8
9

inliers accurately based on their covariance values, instead
of using the fixed 1 only. Fortunately, the EM algorithm
[61], [90] is often used to address such a latent variable estima-
tion problem in (3). It can estimate the necessary parameters
and is more robust to different data. Based on the estimation
of posterior probability, i.e., p; = P(i € Nintier|Xi, ¥i, 0°'9),
which indicates to what degree (x;, y;) being an inlier, we first
initialize it using (11) and obtain

0, di>1
L= 5 i 13
P 1, d; < 4. (13)
Subsequently, let ¢ = m; — M ik Vi,xX; € Cji and
P = diag(py, ..., py) be a diagonal matrix. We can obtain
tr(ETPE
o’ = r(ETPE) (14)
2-tr(P)
tr(P)
= 15
Y N (15)

where E = (€}, ...,¢ey)T, tr(-) denotes the trace of a matrix.
Next, based on the Bayes rule, the probability p; can be
accurately estimated with
Im; N 12
y e 22
_ Hml-—IVIkaHZ
ye 202

pPi = Vi, x; € Cj,k~ (16)

2ra2(1—y)
e

Finally, with a predefined threshold 7, the inlier set Z could
be obtained by the following criterion:

Z={(yi):pi > rt,i €Ny} (17)

which is more robust to threshold 7z and can achieve better
performance than the criterion in (11).

Since the proposed robust feature matching method is
based on a convolution filtering strategy, which can accurately
recover the motion field and remove false matches with
adaptive hyperparameters setting in a linear time complexity,
we name it as LAF and summarize the whole procedure in
Algorithm 1.
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4) Computational Complexity: To convert the putative set
into nonoverlapping cells, the quotients of X are required to
calculate over the divided interval. Therefore, the time cost of
initialization, parameters setting, putative set converting, and
gridding from lines 1 to 3 of Algorithm 1 is around O(N).
The average motion vectors and count matrix are calculated in
each cell and each match is only used once, which costs O (N)
time complexity as well. As for the convolution operation,
it depends on the cell number and the kernel size, which has
time complexity close to O(n? x n2). In addition, calculating
the deviations and initializing the posterior probability using
(10) and (13) in lines 7 and 8 cost O(N) complexity. Further-
more, the estimation of ¢ and y and the calculation of p;
as well as to obtain inlier set in lines 9-11 cost O(N) time
complexity too. Since our LAF algorithm can converge in very
few iterations (typically five times), the total time complexity
of our LAF is about O(n} x n> + N). The space complexity
of our algorithm is O(N) due to the memory requirement
for only storing the putative set and the deviation. Generally,
ny and n. are constants and both much smaller than N. If the
value N is large enough, both the time and space complexities
of our method can be simply written as O(N), that is to
say, the time and space consuming of our method is linear
with respect to the sample number N, which is significant for
addressing large-scale or real-time remote sensing problems.

C. Transformation Estimation and Image Registration

Once we have obtained the reliable feature correspondences
with the proposed LAF, then we can use it to estimate the
transformation function F accordingly. However, since the
remote sensing images typically undergo complex nonrigid
transformation and local distortion or are captured from fish-
eye cameras, simple parameter models are no longer workable.
Therefore, we choose TPS [17] for transformation parame-
terizing due to its generality and smooth functional mapping
nature in supervised learning [91]. Thus, it can represent the
nonrigid transformation in feature matching problem. In addi-
tion, TPS has no free parameters without manual tuning and
also has a closed-form solution that can be decomposed into
a global linear affine motion and a local nonaffine warping
component. The formulation details can refer to [17].

Finally, for each pixel in the sensed image, we use the
estimated transformation function F to calculate the corre-
sponding coordinate in the reference image, and then use a
bicubic interpolation algorithm to calculate the intensity at that
coordinate in the reference image.

D. Implementation Details

There may exist multiple putative matches sharing a com-
mon feature point, i.e.,X; = x;ory; =y;,i # j, which would
degrade the matching performance, and hence, we initialize
these putative matches as outliers and recall the potential true
matches from them using convolution operation. Furthermore,
we normalize them ranging from O to 1, to eliminate the
influence of the coordinate scale of feature points. In addi-
tion, we set a = 16, based on the area of output being
[—2,2] x [—2,2], and empirically set = = 0.8. Note that
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the probabilities of inliers are close to 1 and outliers close
to O after convergence, and hence, the choice of 7 is not
that sensitive. Our LAF uses an iterative strategy to filter
the outliers progressively, which is similar to deterministic
annealing. Thus, we set the threshold 4 to a large value at
the beginning and then decrease it gradually with respect to
iteration. By testing on selected 50 image pairs and using the
adaptive (n., ny), the optimal choice of 1 is related to the cross
point of inlier and outlier statistic lines, as shown in Fig. 2.
Therefore, guided by the cross point locations and to achieve
optimal matching performance on these test data, throughout
this article, we experimentally set the iteration number as 5,
and 4 = 0.8, 0.2, 0.1, 0.05, and 0.05 in each iteration.

IV. EXPERIMENTAL RESULTS

In this section, we test the performance of our proposed
LAF ? on feature matching and image registration experiments
and compare it with other representative state-of-the-art feature
matching methods, such as RANSAC [57], ICF [60], GS [67],
LLT [6], LMR [72], and mTopKRP [73]. The parameters are
set according to the original articles and fixed throughout our
experiments. For LLT, we select the adaptive model for each
data set. The open-source VLFeat toolbox [92] is employed for
putative math set construction with the SIFT descriptor. All the
experiments are conducted on a desktop with 4.0-GHz Intel
Core i7-6700K CPU, 16-GB memory, and MATLAB code.

A. Data Sets and Settings

To evaluate the performance of our method, we use seven
remote sensing image data sets, in which five data sets come
from [73]. These five data sets include 25 pairs of 600 x 337
unmanned aerial vehicle images (i.e., the UAV data set), 34
pair of 256 x 256 or 800 x 800 synthetic aperture radar images
(i.e., the SAR data set), 31 pairs of 561 x 518 or 600 x 700
panchromatic aerial photograph images (i.e., the PAN data
set), 40 pairs of 700 x 700 color infrared aerial photographs
images (i.e., the CIAP data set), and 30 pairs of 1280 x 1024
or 1088 x 1088 fisheye images (i.e., the FE data set), which,
respectively, undergo projective, similarity, or rigid, affine or
projective, rigid, and nonrigid transformations. In addition,
we use the 720Yun data set [93]® for nonrigid test. This
Cloud data set contains 30 pairs of images involving terrain,
roads, buildings, terraces, and so on, with the resolution being
from 496 x 489 to 800 x 800. Since the raw images on
the 720 Yun platform are video panoramic images containing
ground surface fluctuation and imaging viewpoint variations,
each pair of images will undergo nonrigid transformation in
the process of data acquisition. To evaluate the performance on
images of large resolution, we collect 15 pairs of images with
rigid transformations cropped from the GF-II image. We call
this data set GF-II, and the image size is fixed at 2048 x 2048.
The initial match number in each image pair ranges from 3896
to 4827, and the inlier rate ranges from 0.1251 to 0.6211. This
may result in huge computational burden for many matching
methods.

2MATLAB Code for LAF: https://github.com/StaRainJ/LAF
3720Yun: https://720yun.com/
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To ensure objectivity, we manually check each putative
match to be true or false as the ground truth before conducting
any experiments. In the experimental procedure, the F-score
is used for evaluating the matching performance, which is
defined as F — score = 2 * Precision % Recall/(Precision +
Recall), where the Precision (P) is defined as the ratio between
the identified correct match number and the preserved match
number and the Recall (R) is defined as the ratio between
identified correct match number and the correct match number
contained in the putative set. In addition, the root mean
square error (RMSE), maximum error (MAE), and median
error (MEE) are used for measuring the accuracy of image
registration with the following definitions:

L
RMSE = | 1/L Y (rf — F(s{))? (18)
i=1
MAE = max {,/ (e — F(sf))z}%_l (19)
MEE = median{. [ — }'(sf))z}il (20)

where r{ and si are the corresponding landmarks (i.e., pixel
coordinates) of reference images and the sensed images,
respectively, F is the transformation function from sensed
image to reference image, L represents the number of selected
landmarks, and max(-) and median(-) return the maximal and
median value of a set, respectively.

B. Results on Feature Matching

1) Qualitative Illustration: We first give qualitative results
of our proposed LAF on some typical image pairs in Fig. 3.
From top to bottom, each row contains two examples and is
chosen from the seven data sets, i.e., UAV, GF-II, SAR, PAN,
CIAP, 720Yun, and FE. These image pairs are challenging
for the mismatch removal task due to their high outlier
rates, small overlapping areas, scaling, rotation, and even
nonrigid deformations. With our LAF algorithm, the preci-
sion, recall, and F-score on these image pairs are (98.96%,

99.65%, 0.9931), (99.81%, 99.07%, 0.9944), (99.63%,
100.0%, 0.9982), (99.80%, 99.95%, 0.9987), (100.0%,
100.0%, 1.000), (98.84%, 100.0%, 0.9941), (99.01%, 99.40%,
0.9921), (99.84%, 100.0%, 0.9992), (100.0%, 100.0%,

1.000), (100.0%, 100.0%, 1.000), (98.03%, 99.25%, 0.9864),
(97.57%, 99.72%, 0.9863), (99.80%, 99.39%, 0.9959), and
(98.21%, 98.21%, 0.9821). From the results, we can easily
find that most inliers can be identified by using our LAF, with
only a few misjudged. This demonstrates the generality and
robustness of our method to handle different types of image
deformations and a large number of outliers.

2) Quantitative Comparison: Next, we will evaluate the
feature matching performance of our LAF in a quantitative
way. To this end, the above mentioned seven data sets are
divided into three groups such as rigid data set (SAR, CIAP,
and GF-II), projective data set (UAV and PAN), and nonrigid
data set (720Yun and FE), and the average putative match
number of these three groupsis 1, 691.0, 1,372.1, and 651.38,
respectively. The cumulative distribution of initial inlier ratios

on these three data sets is provided in the first row of
Fig. 4, and each column presents the rigid, projection, and
nonrigid data sets, respectively. We see that the inlier ratio
on the rigid data set is generally high, with a few image
pairs being challenging because of low inlier ratio, some of
which may undergo scaling and rotation deformations. As for
the projective and nonrigid data sets, they typically suffer
from low inlier rate and nonrigid deformations, respectively,
which are challenging for the mismatch removal task. From
the second to the last rows in Fig. 4, the statistical results
about precision, recall, F-score, and runtime on the three data
sets are comprehensively reported and summarized. From the
statistical results, we find that all methods obtain good results
on the rigid data set except for ICF. The reason is that the
rigid data set almost contains simple transformation image
pairs and thus easy to handle, while the poor performance
of ICF is mainly because of its relaxed spatial constraint
and parameter sensitivity. Compared with GS and RANSAC
methods, LAF would preserve more correct matches and
achieve a better recall rate. Although LLT obtains comparative
results, it performs not well on low inlier rate data and the
transformation model needs to be set manually. The recently
proposed methods LMR and mTopKRP achieve promising
performance too but are slightly worse than our proposed LAF.
The comprehensive performances are clearly characterized
with the F-score statistic, from which we can observe that
our method is superior to other methods. For the projective
data set, the comparison results are similar with the rigid
data set for the same reason. Specifically, our method can
keep robust to a large number of outliers and achieve the best
precision and recall performance, whereas the other methods
may be degraded even fail in some cases. As for the nonrigid
data set, LLT, mTopKRP, and LAF have significant superior
performance, whereas the performances of RANSAC and GS
methods are degraded a lot for the nonrigid deformation,
and simultaneously, the ICF still performs the worst for the
unworkable correspondence function definition and parameter
sensitivity. As for the learning-based method LMR, it has
promising precision but low recall because the fisheye images
are not contained in its training samples. From the com-
prehensive results, i.e., F-score, we can clearly observe that
our proposed LAF can obtain the best performance, which
demonstrates its effectiveness and robustness in addressing
nonrigid data. Most importantly, our method has a relatively
low complexity, i.e., linear complexity, as shown in the last
row in Fig. 4, which is surprisingly fast than other methods
especially when handling tens of thousands of matches.

C. Results on Image Registration

1) Qualitative Illustration: The registration experiment
focuses on whether the transformed image can maximize the
alignment of the overlapping area between the reference and
sensed images. To this end, we first give visual registration
results on typical image pairs in Fig. 5. From top to bottom,
the first row presents the original images, where the left and
right in each group are reference and sensed images, respec-
tively. The second to the last rows present the registration
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Feature matching results of our LAF on 14 representative remote sensing image pairs. (From top to bottom and left to right) UAV1, UAV2, GF-II1,

GF-112, SAR1, SAR2, PAN1, PAN2, CIAP1, CIAP2, Yunl, Yun2, FE1, and FE2. The initial correspondence numbers of these 14 image pairs are 1351, 1302,
4232, 4582, 2243, 1982, 1875, 2304, 2152, 2648, 2198, 1154, 3081, and 1000, with the inlier rates being 42.49%, 41.40%, 44.58%, 42.99%, 39.77%, 42.84%,
26.83%, 26.39%, 10.59%, 11.82%, 36.58%, 31.37%, 31.97%, and 50.30%, respectively. The head and tail of each arrow in the motion field correspond to
the positions of feature points in the two images (blue = true positive, black = true negative, green = false negative, and red = false positive). For visibility,
in the image pairs, at most 100 randomly selected matches are presented, and the true negatives are not shown. Best viewed in color.

results of all comparing methods, where the left and right
in each group are checkboard results and the warped sensed
images, respectively. From left to right, the first two columns
are chosen from projective and rigid data sets, respectively;
the middle column represents fisheye image pair, and the last
two are taken from the 720Yun data set. From the qualitative

registration results, we can find that RANSAC, ICF, and GS
can achieve satisfying performance due to their global con-
straints, which can obtain high precision in feature matching
task and estimate the transformation model more accurately.
However, they would suffer from the nonrigid deformation
and/or heavy outliers, for instance, RANSAC merely estimates
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Quantitative comparisons of RANSAC [57], ICF [60], GS [67], LLT [6], LMR [72], mTopKRP [73], and our LAF on seven image sets that are

divided into three groups according to their transformation models. (From left to right) Rigid (SAR, CIAP, GF-II), projective (UAV, PAN), and nonrigid
(720Yun, FE). (From top to bottom) Initial inlier ratio, precision, recall, F-score, and runtime with respect to the cumulative distribution. A point on the curve
with coordinate (x, y) denotes that there are 100 * x percent of image pairs that have the performance values (i.e., inlier ratio, precision, recall, F-score, or

runtime) no more than y, and the average performance values on the three image groups for each comparing method are shown in the legend accordingly.

a rigid model for fisheye and 720Yun image pairs, ICF fails
for low inlier rate in the second image pair, and GS demands
a huge computation complexity. As for LLT and mTopKRP,
the main area is aligned well but not the marginal one. LMR

Authorized licensed use limited to: Wuhan University. Downloaded on July 12,2020 at 06:14:25 UTC from IEEE Xplore. Restrictions apply.

has built promising F-scores in the mismatching removal task,
but the registration results are poor with a strange visual
effect. This is because LMR may preserve some bizarre and
obvious false matches due to its limited match representations.
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LAF(ours)

Fig. 5.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Qualitative illustration of overall image registration of our LAF and other comparing methods on five representative remote sensing image pairs.

First row: original input images, where the left and right in each group are reference and sensed images. Second to the last rows: registration results of all
comparing methods, where the left and right in each group are checkboard results and the warped sensed images, respectively.

TABLE I

REGISTRATION RESULTS OF SEVEN COMPARING METHODS ON REMOTE
SENSING DATA SETS. THE AVERAGE AND STANDARD DEVIATION OF
RMSE, MAE, AND MEE ARE USED FOR EVALUATION, AND THE
BEST RESULTS ARE IDENTIFIED WITH BOLD

Method RMSE MAE MEE

RANSAC [57]  8.298 (£31.65)  36.59 (£92.50)  6.846 (+38.37)
ICF [60] 6.464 (£41.07)  28.23 (£101.8)  6.744 (£57.67)
GS [67] 1072 (£23.61)  70.39 (£121.7)  2.021 (+11.63)
LLT [6] 23.53 (£87.35)  66.44 (£182.0)  30.42 (£121.7)
LMR [72] 15.12 (£69.33)  68.51 (£161.8)  16.61 (96.41)
mTopKRP [73]  6.161 (£37.74)  27.59 (£115.2)  6.715 (+47.87)
LAF (ours) 4.406 (£23.22)  26.09 (£81.29)  3.339 (£26.95)

In contrast, our proposed LAF can align the overlapping area
more accurately, especially the marginal areas.

2) Quantitative Comparison: To evaluate the registration
performance in a quantitative way, 78 image pairs, includ-
ing different types of deformation, are selected from the
abovementioned data sets and used to adequately compare
the registration performance of these comparing methods.
Specifically, the average initial correspondence number of
the registration data is 1099.73, with an average inlier rate
being 27.23%. In addition, the quantitative experiment is
conducted on the selected landmarks {rf{, s¢}%_ | manually, and

performance evaluation is measured by calculating the RMSE,

MAE, and MEE of 20 pairs of landmarks that are evenly
distributed in easily identifiable locations around the region
of interest. The average and standard deviation of RMSE,
MAE, and MEE on the 78 selected image pairs are reported
in Table I, in which we can find that our LAF achieves
the best performance of RMSE and MAE. GS obtains the
best MEE performance followed by our LAF, but GS is not
robust to address the general registration task due to the worst
MAE metric. RANSAC achieves a stable metric measurement
because of its global geometrical constraint, but it suffers a
lot from the nonrigid deformations. ICF and mTopKRP can
obtain competitive performance for the reason that they can
preserve reliable feature correspondences that are sufficient to
estimate the transformation correctly. As for LLT, the relatively
poor registration performance is mainly attributed to the low
putative inlier rate. Furthermore, LMR performed not well for
the same reason, i.e., some bizarre and obvious false matches
may be preserved due to its limited match representation.

V. CONCLUSION

In this study, we propose a new feature matching method
based on filtering and denoising theory. In particular, we first
divide the putative set into nonoverlapping cells and then
calculate the typical motion vector of each cell using the
Gaussian kernel convolution operation. Finally, the outliers
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are detected by checking the deviations between the putative
motion vector and its corresponding typical motion vector.
Also, an iterative strategy is proposed to filter out the outliers
progressively. In addition, an adaptive parameter setting strat-
egy and posterior probability estimation enable our method to
be robust to different data. Our method can converge in a few
iterations, and the gridding strategy enables it to achieve linear
time complexity. Most importantly, some sparse point-based
tasks may inspire from our method when they are achieved
by deep learning techniques.

However, the proposed method may largely rely on the local
coherency among potential true inliers. If there are only a few
true matches but a large number of false matches or the inliers
are located extremely separately, the assumption on local
consistency would not satisfy, and hence, our LAF may be
unworkable. Therefore, in the future research and for different
scenarios in remote sensing, we plan to address the problem
of feature point detection and description to create more valid
feature matches. In addition, a deep convolutional pipeline
based on our gridding convolutional strategy would also be
studied for better matching and registration performance.
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