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Multiscale Locality and Rank Preservation for
Robust Feature Matching of Remote Sensing Images

Xingyu Jiang , Junjun Jiang , Aoxiang Fan, Zhongyuan Wang , and Jiayi Ma

Abstract— As a fundamental and important task in many
applications of remote sensing and photogrammetry, feature
matching tries to seek correspondences between the two feature
sets extracted from an image pair of the same object or scene.
This paper focuses on eliminating mismatches from a set of
putative feature correspondences constructed according to the
similarity of existing well-designed feature descriptors. Consid-
ering the stable local topological relationship of the potential true
correspondences, we propose a simple yet efficient method named
multiscale Top K Rank Preservation (mTopKRP) for robust
feature matching. To this end, we first search the K -nearest
neighbors of each feature point and generate a ranking list
accordingly. Then we design a metric based on the weighted
Spearman’s footrule distance to describe the similarity of two
ranking lists specifically for the matching problem. We build
a mathematical optimization model and derive its closed-form
solution, enabling our method to establish reliable correspon-
dences in linearithmic time complexity, which requires only tens
of milliseconds to handle over 1000 putative matches. We also
introduce a multiscale strategy for neighborhood construction,
which increases the robustness of our method and can deal with
different types of degradation, even when the image pair suffers
from a large scale change, rotation, nonrigid deformation, or a
large number of mismatches. Extensive experiments on several
representative remote sensing image data sets demonstrate the
superiority of our method over state of the art.

Index Terms— Feature matching, local structure, multiscale,
nonrigid, ranking list.

I. INTRODUCTION

FEATURE matching, which aims to establish reliable fea-
ture point (e.g., pixel coordinate) correspondences from

two images of the same object or scene, is a fundamental and
crucial problem for many vision-based tasks, especially for the
applications of remote sensing and photogrammetry, includ-
ing image registration and fusion [1]–[3], panoramic image
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mosaic [4], [5], 3-D reconstruction [6], [7], object identifica-
tion, and tracking [8], [9]. These matching-based tasks are
typically accomplished based on a robust and efficient fea-
ture matching method to obtain as many correct matches as
possible while keeping the mismatches to a minimum.

Feature matching is a combinatorial nature problem, which
causes highly computation complexity in non-Pareto criterion
complex optimization. Specifically, matching N points to
another N points may lead to a total of N ! permutations [10].
To address this issue, the common idea of many existing meth-
ods is to solve the feature matching problem in a two-stage
manner, which first constructs a set of putative matches based
on the similarity of the local patch descriptors associated with
the distinct feature points, such as the local pixels’ gradients,
intensity values, or other descriptions of extracted distinct
and stable extremum points [11]–[13]. However, in addition to
some correct correspondences (i.e., inliers), there are a large
number of false matches (i.e., outliers) in the putative set as
well due to the ambiguities of local descriptors, particularly
when the image pairs suffer from the low-quality, occlusion,
or repetitive patterns. Therefore, in the next step, it is critical to
filter out the mismatches from the constructed putative match
set using additional constraints.

Many existing mismatch removal methods are usually based
on a geometrical constraint, which regards the putative match
set as a mapping from inputs to outputs by satisfying a
predefined geometrical transformation model [14]. However,
due to the ground relief variations, imaging viewpoint changes,
captured at low-altitude or by a fisheye (FE) camera, remote
sensing images often involve local distortions which result in
complex spatial relationships. Therefore, the transformation
model can vary with respect to different data and is usually
unknown beforehand, especially if it is nonrigid. In this situa-
tion, using a predefined geometrical model will probably lead
to inferior matching accuracy. Another obstacle of existing
methods is the large computational complexity caused by
complex nonrigid transformation models, which is not applica-
ble for dealing with large-scale or real-time tasks, for exam-
ple, unmanned aerial vehicle (UAV)-based tasks including
3-D land surface reconstruction, large-area image mosaic,
moving object detection, and tracking [4], [6], [15].

To address the above-mentioned challenges, we propose a
robust method for remote sensing image matching based on
the similarity between the two local structures, which are com-
posed by the K -nearest neighbors (K -NN) of the two matched
feature points, respectively. In particular, the relationship
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among the neighboring feature points in a remote sensing
image is usually stable and only changed slightly, even
when the image undergoes scale change, rotation, or nonrigid
transformation [1]. Based on this observation, we develop a
measurement to describe the similarity of two local structures
and build a mathematical optimization model accordingly to
identify the false matches. Our model is general which does
not require a predefined transformation model, and it is also
quite efficient with a closed-form solution. This work is an
extension of our previous works in [16] and [17]. Compared
to our previous works, in this paper, we redefine the ranking
list distance measurement based on multiscale neighborhoods
to preserve the local topological structure more strictly and
generally, which makes our method more robust to outliers
and different types of degradation.

In summary, our major contribution is twofold. On the one
hand, a simple yet efficient method is proposed to address
the robust feature matching problem. Compared with existing
approaches, our method removes mismatches merely by pre-
serving the local topological structure of the potential inliers,
which is independent of any predefined global image transfor-
mation with a specific parametric or nonparametric model, and
hence, it is more general and robust to different kinds of image
transformations. On the other hand, we introduce a general
mathematical optimization model for the mismatch removal
problem and derive its closed-form solution. Based on this
model, any criteria for describing the latent difference between
inliers and outliers can be integrated into our formulation.
Moreover, the closed-form solution enables us to establish
the reliable correspondences in linearithmic time complexity,
which requires only tens of milliseconds to handle over 1000
putative matches.

The remainder of this paper is organized as follows.
Section II describes the background material and related
works. In Section III, we introduce our multiscale Top K
Rank Preservation (mTopKRP) algorithm in detail, including
the measurement of K ranking similarity, a general objective
function and its closed-form solution. Section IV provides the
qualitative and quantitative evaluations of our method in com-
parison with several state-of-the-art methods on different types
of remote sensing image data sets. Finally, some concluding
remarks are summarized in Section V.

II. RELATED WORKS

In general, the problem of feature matching can be solved in
a two-stage manner. In the first stage, salient features, i.e., con-
trol points and their descriptors, are extracted from each image,
and a set of putative point correspondences is constructed by
using a similarity constraint of descriptors. Classic methods
addressing this stage include scale-invariant feature transform
(SIFT) [11], speeded up robust features (SURF) [12], and ori-
ented FAST and rotated BRIEF (ORB) [13], which have been
proven to be both efficient and effective. SIFT detects feature
points in Gaussian-scale space and uses gradient histogram
to form descriptors, which is known to be scale, viewpoint,
rotation, and illumination invariant. SURF improves SIFT
by using the Hessian matrix for accurate feature detection

and an integral image strategy for efficiency. Specifically,
Li et al. [18] refined the descriptor of SIFT to overcome the
difference in the gradient intensity and orientation between
remote image pairs. In contrast, ORB adopts a different
scheme for both feature detection and description. It achieves
a much higher speed by using FAST detector [19] and BRIEF
descriptor [20], while the scale invariance property is sacri-
ficed. However, due to the ambiguities of descriptor matching,
this putative correspondence set is typically contaminated
by a large number of outliers. Therefore, the second stage
is desired to remove the outliers with a global geometric
constraint, resulting in an accurate feature matching result.
In this paper, we assume that the putative correspondences
are constructed, and then we focus on the mismatch removal
problem. A variety of methods addressing this problem have
been proposed in the literature, and here, we give a brief
review of them.

The mismatch removal methods can be roughly divided
into two categories, i.e., resampling and nonparametric fitting
methods. Random sample consensus (RANSAC) [14] is one of
the most representative methods in the literature, which tries to
find the largest outlier-free correspondence set that conforms
to a predefined parametric model by randomly resampling.
Inspired by RANSAC, maximum likelihood estimation sample
consensus (MLESAC) [21] and progressive sample consensus
(PROSAC) [22] are proposed as effective variants. Although
resampling methods have achieved great success for the
feature matching problem, they also have some limitations.
When the motion of image scene is nonrigid, which cannot
be characterized by a parametric model, these methods will
not be valid. To this end, the nonparametric fitting methods
are introduced, such as vector field consensus (VFC) [23],
identify correspondence function (ICF) [24], and robust L2
estimator [25]. By using M-estimators or nonlinear regression
techniques, these methods are able to conduct robust fitting of
nonrigid motion field. The correspondences that are consistent
with the recovered motion are identified as inliers. However,
their performance will inevitably degrade in the presence of a
large proportion of outliers.

Another strategy for feature matching is to directly estab-
lish correspondences between the two feature sets. These
methods also involve two categories. Iterative closest point
(ICP) [26] and coherent point drift (CPD) [27] are the rep-
resentatives of the first category, which aims to estimate the
transformation model between the two feature sets. In partic-
ular, with a predefined parametric or nonparametric model,
these methods iterate between the two update processes,
i.e., correspondence establishment and transformation estima-
tion, until convergence. The feature correspondences and the
transformation model then can be determined simultaneously.
Gaussian mixture model-based registration (GMMREG) [28]
provides a universal framework for point set registration,
which aims to minimize a statistical discrepancy measurement
between the two Gaussian mixture distribution of the two
point sets. The second category is known as graph matching
methods [29], [30]. Spectral matching (SM) [31], SM with
affine constraint (SMAC) [32], and graph shift (GS) [33] are
the representatives in this category. Generally, these methods
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Fig. 1. Illustration of the local structure ranking list similarity measurement in our method. There are three examples shown above to judge whether the
putative match (x, y) is correct or not. We search the K -NNs (K = 4) of feature points x and y from the putative point set. We can obtain the neighboring
ranking lists of x and y for these three examples, which are {σ(x) = (A, B, C, D), σ (y) = (A�, B �, C �, D�)}, {σ(x) = (A, B, C, D), σ (y) = (D�, A�, B �, C �)},
and {σ(x) = (A, B, C, D), σ (y) = (N �, A�, B �, C �)}, respectively. Regarding the matched points like (A, A�) as the same item, we can calculate the local
structure difference or cost with locality preserving matching (LPM) [16], TopKRP [17], and the improved TopKRP in this paper (i.e., mTopKRP) for each
example, and we denote them as [CLPM, CTopKRP, CmTopKRP] accordingly. The costs are [0, 0, 0] (left, true match), [0, 0.3452, 0.3452] (middle, false match),
and [0.25, 0.4595, 0.25] (right, true match), respectively. The putative matches are denoted with full lines, where blue and green lines indicate true match,
and red line indicates false match. The dotted circles indicate the Euclidean distance range centered on the object point x or y.

do not rely on a specific transformation model. Instead, they
formulate the feature matching problem as an integer quadratic
programming (IQP) problem, which enforces the preservation
of geometric structures between the two feature sets. The
correspondences are determined by the optimal solution of it.
However, methods of these two categories throw out the local
image information of features (e.g., descriptors), and utilize
only the spatial information. Therefore, their performance may
be degraded to some extent, meanwhile, the time cost is high
as well.

In the remote sensing community, the feature matching
literature also includes a variety of methods [34]–[37]. For
example, locally linear transforming (LLT) [1] is proposed
to address the mismatch removal problem, which accom-
modates both parametric and nonparametric transformation
models, and a novel local structure constraint is developed.
Wen et al. [38] introduced a unified feature match criterion,
which combines spatial consistency and feature similarity.
In addition, a graph matching-based method, restricted spa-
tial order constraint (RSOC) [39], is proposed to accomplish
accurate point matching based on the spatial order constraints.
In the recent past, Zhou et al. [40] used a probabilistic method
with global and local regularization terms to differentiate
true and false correspondences. Li et al. [5] proposed to use
support-line voting to filter mismatches and affine-invariant
ratios to subsequently refine the matching results and is able
to discover more correct matches than initial matches.

Most recently, several novel methods were proposed
to address the feature matching problem by using the
piecewise-smoothness constrains and local structure consis-
tence, such as LPM [16], [41], [42], coherence-based decision
boundaries [7], grid-based motion statistics [43], and deep
learning method [44], which have achieved promising per-
formance in terms of both accuracy and efficiency. Specifi-
cally, the key observation of LPM is that even under severe
deformation, the local topological elements are generally well
preserved to some extent. To achieve scale and rotation invari-
ant, LPM considers the spatial neighborhood relationship of
feature points and develops a robust and surprisingly effective
mismatch removal method.

Although our previously developed LPM [16] and
TopKRP [17] methods preserve the local topological

structures of two putatively matched feature points from
two images, their differences lie in the definition of the
topological similarity measurement between the two feature
points. Specifically, LPM defines the local structure similarity
between feature points by merely counting the intersection of
K -NN. Obviously, LPM ignores the differences (i.e., specific
position relationship) among the neighboring elements and
cannot exploit the true topological structure. In other words,
it is not strict enough for the constraint in LPM to preserve the
local structure, e.g., as the first two examples shown in Fig. 1,
where the costs generated by LPM on these two situations
are both 0, while the putative match (x, y) in these two image
pairs is correct and incorrect, respectively. By contrast, in the
TopKRP [17], we present a more strict measuring criterion
for local structure preservation by transforming the putative
matched feature points from the feature space to the ranking
list space, and the topological structure similarity of two
feature points is then measured by comparing their ranking
lists, which can identify inliers and outliers more accurately
for the first two examples in Fig. 1.

III. METHOD

To establish reliable feature correspondences between the
two remote sensing images, we first construct a set of putative
matches by using the SIFT algorithm [11], and then the
matching task boils down to remove false matches from the
given putative set. Therefore, in the following, we will focus
on the mismatch removal based on a K -NN ranking similarity
for preserving the local topology structure.

A. Top K Rank Similarity Measurement

To measure the local elements’ ranking similarity, we first
determine the K -NN of each feature point. For each putative
match (x, y), we can obtain two ranking lists of the feature
points x and y denoted as σ(x) and σ(y), respectively. The
difference between two ranking lists can be defined based on
the weighted Spearman’s footrule distance [45]. We denote the
top K rank difference as DK (σ (x), σ (y))1 with the following

1The returned value of DK is normalized within [0, 1] for the denominator
in (1). DK = 0 when the two lists are identical, and DK = 1 when they are
completely disjoint.
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form:
DK (σ (x), σ (y)) = 1

�K

�
t∈T

φt (1)

where T = σ(x) ∪ σ(y) with the cardinality |T | ∈ [K , 2K ],
and �K is the weighted Spearman’s footrule measurement
between the two full ranked lists σ(x) and σ(y), which is
used for normalizing

�
t∈T φt into [0, 1] with the following

form:
�K = −2K + 2z

�K
k=1 1/k. (2)

In (1), the ranking distance contribution of item t to �K is

φt = le f t{

⎧⎪⎨
⎪⎩

�σt (x)−σt(y)�1
min{σt (x),σt(y)} , t ∈ σ(x) ∩ σ(y)
�σt (x)−z�1
min{σt (x),z}, t ∈ σ(x), t /∈ σ(y)
�σt (y)−z�1
min{σt (y),z}, t /∈ σ(x), t ∈ σ(y)

(3)

where σt (x) and σt (y) are the rankings of element t in the
lists σ(x) and σ(y), respectively, and z is defined based on⎧⎨
⎩
�

t∈T φt = 1

2
�K , ∀t : σt (x) + σt (y) = K + 1�

t∈T φt = �K , |T | = 2K , σ (x) ∩ σ(y) = ø
. (4)

Therefore, the form of z can be written as

z = K − 4�K/2	 + 2(K + 1)
��K/2	

k=1 1/k�K
k=1 1/k

(5)

where the operator �·	 rounds the element to the nearest integer
not greater than that element. Next, we prove z ≥ K , so that
with σt (·) ≤ K , we can convert φt in (3) as

φt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�σt (x) − σt (y)�1

min{σt (x), σt (y)} , t ∈ σ(x) ∩ σ(y)

z

σt (x)
− 1, t ∈ σ(x), t /∈ σ(y)

z

σt (y)
− 1, t /∈ σ(x), t ∈ σ(y)

. (6)

Proof:

z − K = K+2(K+1)
∑�K/2	

k=1
1
k −4�K/2	−K

∑K
k=1

1
k∑K

k=1
1
k

(7)

Let the numerator of (7) be denoted as τ . When K = 1 we
can obtain τ = 0. When K ≥ 2 and K is an even number,
we set K = 2N with N being a positive integer and obtain

τ = 2N + 2(2N + 1)

N�
k=1

1

k
− 4N − 2N

2N�
k=1

1

k

= (4N + 2)

N�
k=1

1

k
− 2N

�
2N�
k=1

1

k
+ 1

	

= (2N + 2)

N�
k=1

1

k
− 2N

�
2N�

k=N+1

1

k
+ 1

	

=
�

2N +2N
N�
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1

k
+2

N�
k=1

1

k

	
−
�

2N
2N−1�

k=N+1

1

k
+2N +1

	

= 2N
N�

k=2



1

k
− 1

N + k − 1

�
+ 2

N�
k=1

1

k
− 1 (8)

where N ≥ 1, and hence, we have 1/k ≥ 1/(N + k − 1) and
2
�N

k=1 1/k > 1. Therefore, τ > 0 holds. Similarly, when K
is an odd number, we set K = 2N + 1, and can obtain τ > 0
as well. Therefore, for any positive integer K , z ≥ K holds.

We can find from the definition of φt in (6) that φt is in
inverse proportion to its position σt (x) or σt (y) in the ranking
list even when item t /∈ σ(x) ∩ σ(y). That is to say, when the
item t is an outlier which is close to the object (i.e., x or y)
such as the third example shown in Fig. 1, the false match
(N, N �) gets near the front of the neighboring ranking list of
y (e.g., σN � (y) = 1), thus the cost contributed by item N �
is dominated in the ranking list distance measurement, which
may return a large DK even when the object match (x, y) is
correct. For instance, in Fig. 1, the ranking list distance DK

calculated by (6) is 0.4595 in the right image pair, while for
the false match in the middle situation, the distance calculated
by (6) is 0.3452, which leads to a misjudging about these two
situations. Therefore, the ranking list similarity measurement
DK is sensitive to the outliers if we directly use the weighted
Spearman’s footrule measurement in the feature matching task.

In fact, the K -NN ranking list may be constructed in the
presence of a large number of mismatches or outliers, which
often occurs in feature matching, and the outlier equiprobably
locates in any position in a ranking list. To address this issue,
we redefine the criterion of calculating φt as

φt =

⎧⎪⎨
⎪⎩

ll
�σ �

t (x) − σ �
t (y)�1

min{σ �
t (x), σ �

t (y)} , t ∈ σ(x) ∩ σ(y)

1

2K
�K , otherwise

(9)

where σ �
t (x) and σ �

t (y) are the reranking of element t in new
lists σ �(x) and σ �(y), respectively, only based on the common
elements {t|t ∈ σ(x) ∩ σ(y)}, e.g., in the right example
of Fig. 1, σ �(x) = (A, B, C) and σ �(y) = (A�, B �, C �).
In this way, the new criterion for neighboring rank distance
measurement is more robust to outliers, and DK in these three
examples of Fig. 1 are 0, 0.3452, and 0.25, respectively, which
can distinguish the inlier and outlier more correctly.

B. Problem Formulation

Given a pair of remote sensing images I and I �, suppose we
have obtained a set of N putative matches S = {(xi , yi )}N

i=1
extracted from the image pair above, where the corresponding
feature points xi and yi are the pixel coordinates in I and I �,
respectively. I denote the unknown inlier set. To preserve the
local structure of feature points, the optimal solution is

I∗ = arg min
I

C(I;S, λ) (10)

with the cost function C defined as

C(I;S, λ) =
�
i∈I

DK (σ (xi ), σ (yi )) + λ(N − |I|) (11)

where σ(xi ) and σ(yi ) denote the top K ranking lists of
xi and yi , respectively, DK (σ (xi ), σ (yi )) measures the dif-
ference of the top K ranking lists between xi and yi , and | · |
denotes the cardinality of a set. In this cost function, the first
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term penalizes any match not preserving the local neighbor-
hoods’ ranking similarity, the second term is used to discour-
age the outliers, and the positive parameter λ controls the
tradeoff between the two terms. Ideally, the optimal solution
should achieve zero penalty, i.e., the first term of C should
be zero. That is to say, it tries to obtain the maximum inlier
number and keep the cost value to minimum.

We introduce an N × 1 binary vector p to associate the
putative match set, where pi = {0, 1} indicates whether the
ith putative match is correct or not. Therefore, the cost function
in (11) can be written as

C(p;S, λ)=
N�

i=1

pi DK (σ (xi ), σ (yi ))+λ

�
N −

N�
i=1

pi

	
.

(12)

1) Multiscale Cost: In the formulation above, we have
constructed the K -NN for each feature point to obtain its top
K ranking list, and measured the ranking similarity of each
putative match with DK in (1). However, the optimal value
of K may change with respect to different image data, due
to that the distribution and the proportion of outliers in the
putative set are vary with image domain. In this case, it is not
suitable to address the general feature matching task by fixing
the value of K . To address this issue, we develop a multiscale
strategy, which measures the local K neighborhoods’ ranking
similarity and calculates the cost function under different
scales of K . Therefore, we define a set of different K with
K = {Km}M

m=1, and the ranking list similarity of ith putative
match with respect to Km nearest neighborhoods can be
denoted as DKm (σ (xi ), σ (yi )). Accordingly, the multiscale
cost function about (12) can be written as

C(pS, λ)=
N�

i=1

pi

M

M�
m=1

DKm (σ (xi ), σ (yi ))+λ

�
N −

N�
i=1

pi

	
.

(13)

We reorganize its form by merging the terms related to pi and
obtain

C(p;S, λ) =
N�

i=1

pi(ci − λ) + λN (14)

where

ci = 1

M

M�
m=1

DKm (σ (xi ), σ (yi )). (15)

C. Solution

Given a putative match set, once the K -NNs of all feature
points are constructed, all the cost values of {ci }N

i=1 can be
calculated beforehand. Therefore, to determine the value of pi

in (14), we can easily observe that any putative match with a
cost smaller than the parameter λ will lead to a negative term
and decreases the objective cost function, thus we prefer to set
the value of pi to 1, and vice versa. That is to say, the optimal

solution of p that minimizes the cost function in (14) can be
determined simply by the following criterion:

pi =
�

1, ci ≤ λ

0, ci > λ.
(16)

In this case, the optimal inlier set I∗ can be determined by

I∗ = {i |pi = 1, i = 1, 2, . . . , N}. (17)

Obviously, we can see from (16) that the parameter λ is
used for judging the correctness of putative matches. However,
the ranking list {(σ (xi ), σ (yi ))}N

i=1 of local neighborhoods is
constructed based on the whole putative set, usually including
a large number of outliers, which may cause the incorrect
measurement of the ranking list similarity, and optimally,
it will be more desirable if the ranking list is constructed based
on only the inlier set I, so that we can separate the inliers
and outliers based on ci and parameter λ correctly. However,
the inlier set is what we need to solve in our matching task
and cannot be known in advance. To address this dilemma,
we utilize an iterative strategy to determine the optimal I by
seeking an approximation Iiter in each iteration and use it for
neighborhood construction.

To verify how well the new measuring criterion and the
iterative strategy work, we randomly select in total 30 remote
sensing image pairs with different types of transformations
involving rigid, rotation, scale change, nonrigid deformation
such as FE images, and so on. The average initial inlier
number and inlier percentage of putative matches obtained
by SIFT on the whole test data are 1148.2% and 56.28%,
respectively. In addition, the F-score is used for evaluating
the matching performance, which is defined as F-score=2 ×
Precision × Recall/(Precision+Recall), where the Precision is
defined as the ratio of the identified correct match number
and the preserved match number, and the Recall is defined as
the ratio of identified correct match number and the correct
match number contained in the putative set. The F-score curves
with respect to different values of parameter λ are summarized
in Fig. 2, where we have reported the results of LPM [16],
TopKRP [17], and mTopKRP. Clearly, our mTopKRP greatly
promotes the matching performance. With a proper value of λ
(e.g., 0.8), we obtain the best average F-score (AF) 96.48%,
where the average precision (AP) and recall are about 94.76%
and 98.41%, respectively.

Even the K -NN ranking lists are constructed based on
the whole putative sets, which involve quite a number of
false matches, the top K rank preservation strategy can work
well and generates a correspondence set, which can filter out
most of the outliers and simultaneously keep most of the
inliers. Thus, the generated correspondence set can be a good
approximation of the true inlier set, and we denote it as I1.
To further improve the performance, we subsequently use I1
to construct the K -NN ranking list for each putative match
in S, and solve the optimal I∗ in an iterative manner, i.e., the
jth inlier set I j can be generated based on the ranking list
constructed with the ( j − 1)th inlier set I j−1, which can be
written as

I j = arg min
I

C(I; I j−1,S, λ) (18)
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Fig. 2. F-score with respect to the cumulative distribution by using the whole feature set to construct local neighboring structure on 30 remote-sensing image
pairs. The average inlier number and average inlier rate of the putative matches are 1148.2% and 56.28%. (Left) Results of LPM [16], where we normalize
the cost by dividing it with 2K , e.g., K = 15. (Middle) Results of TopKRP [17] with K = 15. (Right) Results of mTopKRP using a new similarity measuring
criterion and multiscale neighborhood representation, e.g., K = [13, 15, 17]. A point on the curve with coordinate (x, y) denotes that there are (100 ∗ x)%
percent of image pairs, which have F-score not more than y. The best average F-score and its threshold λ are marked with red box in the legend.

Fig. 3. Distributions of the cost ci in (15) by using the whole feature set
I0 = S (left) and by using I1 (right) to construct neighboring structure.

where j = 1, 2, . . . , Max I ter , I0 = S, and the optimal
inlier set I∗ can be approximated as IMaxIter. Fig. 3 reports
the distributions of the cost ci in (15) by using S and
I1 to construct neighboring structure. Clearly, we can see
from the results that the margin between inlier and outlier
has been distinctly enlarged by using the refined set I1 for
neighborhood construction. With the parameter λ = 0.35,
the AP, recall, and F-score on the 30 testing image pairs
can be largely increased from (94.76%, 98.41%, 96.48%)
to (98.42%, 99.27%, 98.83%). As the iteration proceeds,
the AP, recall, and F-score can be further increased to
(98.70%, 99.42%, 99.05%) after convergence. In this paper,
considering the time complexity, we set Max I ter = 3, which
works well and can generate satisfying matching performance
on remote sensing images.

Since our method aims to preserve the similarity of top K
ranking lists under the multiscale KNN, we name it as mTop-
KRP and summarize the whole procedure in Algorithm 1.

D. Computational Complexity

To construct the ranking lists {σ(xi), σ (yi )}N
i=1 based on

K -NN for all the feature points in the putative set, the time
complexity scales like O((K + N) log N) by using K-D
tree [46]. Thus, the time cost of Line 3 in Algorithm 1 is
close to O((KM + N) log N) for the reason that the small
scale K -NN can be directly obtained from the larger one.
According to (6), the least and most time costs of calculating
{ci }N

i=1 in Line 4 are O(
�M

m=1 Km N) and O(
�M

m=1 2Km N),
respectively. Moreover, determining p and inlier set I in Line
6 just costs O(N) time. Therefore, the total time complexity

Algorithm 1: mTopKRP Algorithm

Input: Putative set S = {(xi , yi )}N
i=1, params. K, λ,

Max I ter
Output: Inlier set I∗

1 Initialize j = 0, I0 = S ;
2 Iteration:
3 Construct ranking lists based on I j with multiscale

K -NN K;
4 Calculate cost {ci }N

i=1 according to (1) and (15);
5 j = j + 1;
6 Determine I j using (16) and (17);
7 Until: j ≥ Max I ter
8 I∗ = I j .

TABLE I

AF AND AVERAGE RUN TIME (ART, UNIT: MS) OF OUR MTOPKRP
UNDER DIFFERENT SETTINGS OF PARAMETER K ON THE 30

REMOTE-SENSING IMAGE PAIRS IN FIG. 2

of our mTopKRP in one iteration is less than O((KM + N)
log N + (1 + 2

�M
m=1 Km)N). The space complexity of our

method is O(KM N) due to the memory requirement for
storing the top K ranking list. Generally,

�M
m=1 Km  N

and our algorithm can converge in just a few iterations. That
is to say, the time and space complexity of our mTopKRP
can be simply written as O(N log N) and O(N), respectively.
This is significant for addressing real-time or large-scale tasks,
especially in the case of matching high-resolution remote
sensing images.

E. Implementation Details

There are three parameters in our method: K, λ, and
Max I ter . Parameter K determines the number of nearest
neighborhoods for multiscale K -NN ranking lists construction.
To seek the optimal value of K, we test different settings on
the 30 remote sensing image pairs shown in Fig. 2, and report
the AFs and run time in Table I. From the results, we see that
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the F-score increases as K increases, while the run time also
increases at the same time. To achieve a tradeoff between the
accuracy and efficiency, we set K = [13, 15, 17] as its default
setting. Parameter λ controls the threshold for judging the
correctness of putative matches. Parameter Max I ter indicates
the max iteration in our method. Obviously, a small value
of λ will increase the precision and simultaneously decrease
the recall and vice versa. A large value of Max I ter will
improve the performance slightly but requires more time cost.
In our evaluation, based on the experiments and analysis
aforementioned, we set the default values of these parameters
as Max I ter = 3, K = [13, 15, 17], and λ = 0.8, 0.35, 0.35
in the three iterations, respectively.

IV. EXPERIMENTAL RESULTS

In this section, we test the performance of our proposed
method on different kinds of remote sensing data sets and com-
pare it with other feature matching methods. In particular, both
rigid and nonrigid remote sensing image data sets are selected
for evaluation, which are of different imaging scenarios. Six
state-of-the-art methods are chosen for comparison, namely
RANSAC [14], ICF [24], GS [33], LLT [1], and LPM [16].
The parameters are set according to the original papers and
fixed throughout our experiments. For LLT, we select the
adaptive model for each data set. The open source VLFeat
toolbox [47] is employed for SIFT detector and descriptor as
well as K -NN searching with K-D tree. The experiments are
conducted on a desktop with 3.4-GHz Intel Core CPU, 8-GB
memory, and MATLAB R2016b code.

A. Data Sets

To evaluate the performance of our method, we use five
remote sensing image data sets as follows.

1) UAV: The data set consists of 35 pairs of color images,
which are of resolution 600 × 337 and captured by a UAV
over a piece of farmland. Accurate feature matching of these
images is particularly required in the field of automatic crop
monitoring. Generally, the images suffer from projective dis-
tortions due to the unstable imaging condition.

2) SAR: The data set contains 34 image pairs corrupted
with strong noise. For each image pair, the two images are
separately obtained by synthetic-aperture radars (SARs) on a
satellite and on an UAV, respectively. Feature matching for
such image pairs is critical in the positioning and navigating
problem, where the UAV images are required to match the
corresponding stored satellite images to accurately estimate
the current position. The image pairs can be modeled with
similarity or rigid transformation in most cases.

3) PAN: The data set consists of 31 pairs of panchro-
matic (PAN) aerial photographs captured by a frame camera at
different times. Viewpoint changes often exist in these image
pairs, resulting in affine or projective distortions. Feature
matching for these images typically arises in change detection.
The images are of two sizes of 561 × 518 and 600 × 700.

4) CIAP: The data set consists of 40 pairs of color infrared
aerial photographs (CIAP), with the size of 700× 700. We note
that these images are already orthorectified, and hence,

the transformation model is just rigid. However, the overlap
areas are quite small. Feature matching for these images is
important in the image mosaic problem.

5) FE: The data set consists of 30 pairs of images captured
from four scenes with an FE camera [48].2 Most of the image
pairs suffer from viewpoint changes, and severe nonrigid
deformations are also involved. These images are used for
nonparametric image matching evaluation.

To establish the ground truth, i.e., determine the true corre-
spondence set, we have made a benchmark before conducting
any experiments, to ensure objectivity; specifically, each puta-
tive correspondence in each image pair is checked manually.

B. Qualitative Results

To demonstrate the effectiveness of our proposed feature
matching method, we first give the results on some typical
image pairs in Fig. 4. From top to bottom, the five rows
represent the aforementioned five data sets, namely, UAV,
SAR, PAN, CIAP, and FE, and each contains two examples.
For each example, the left plot presents the intuitive result
on the image pair, and the right plot presents the motion
field of the correspondences. For visibility, only 100 randomly
selected correspondences of true positive, false negative, and
false positive are shown in the left plot for visuality. The
right motion field presents the result for all correspondences,
denoted by the arrows.

The selected image pairs are challenging for the feature
matching task for various reasons. Specifically, the first and the
third rows suffer from projective distortions, the second row
suffers from severe noise, the fourth row suffers from small
overlap areas, and the last row suffers from nonrigid defor-
mations. As aforementioned, the SIFT algorithm is adopted
to extract features and a large number of correspondences
are constructed together with many outliers. The number of
initial correspondences is 574, 852, 539, 1084, 504, 628,
305, 388, 503, and 644 for the ten image pairs, with the
inlier rate being 42.49%, 41.40%, 36.05%, 42.99%, 26.88%,
27.26%, 13.28%, 15.76%, 50.30%, and 15.45%, respectively.
By using our proposed method to filter out the mismatches,
we can obtain the precision, recall and F-score statistics
being (99.65%, 99.30%, 0.9948), (99.81%, 99.63%, 0.9972),
(99.36%, 99.82%, 0.9959), (99.18%, 99.65%, 0.9941),
(99.60%, 100.0%, 0.9980), (100.0%, 99.84%, 0.9992),
(100.0%, 100.0%, 1.000), (100.0%, 100.0%, 1.000), (97.24%,
98.21%, 0.9773), and (98.77%, 99.53%, 0.9915), respectively.
Clearly, our method successfully identifies most of the true
correspondences, and only a few are wrongly classified. These
results prove the generality and robustness of our method,
which can handle different scenarios even in the presence of
a large percentage of outliers.

C. Quantitative Results

To test the performance of feature matching methods in
different scenarios, we divide the five data sets into three
groups. SAR and CIAP are classified as a rigid data set,

2http://www.ti.uni-bielefeld.de/html/people/ahoffmann/outdoordb.html
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Fig. 4. Feature matching results of our mTopKRP on ten representative remote sensing image pairs. (Top to bottom and left to right) UAV1, UAV2, SAR1,
SAR2, PAN1, PAN2, CIAP1, CIAP2, FE1, and FE2. The ratio of inliers in the ten image pairs is 42.49%, 41.40%, 36.05%, 42.99%, 26.88%, 27.26%,
13.28%, 15.76%, 50.30%, and 15.45%, respectively. The head and tail of each arrow in the motion field correspond to the positions of feature points in the
two images (blue blue = true positive, black = true negative, green green = false negative, red red = false positive). For visibility, in the image pairs, at most
100 randomly selected matches are presented, and the true negatives are not shown. Best viewed in color.

UAV and PAN are classified as projective data set, and FE for
nonrigid data set. The average putative match number of these
three data sets is 939.43, 888.94, and 463.00, respectively.
The quantitative experiments are conducted on these three
groups, and the results are reported separately. The cumulative
distribution of initial inlier ratios on the three data sets is
provided in the first row of Fig. 5. We see that for the rigid
data set, the inlier ratio is generally high, with a few image
pairs being challenging because of low inlier ratio. For the
projective data set, the inlier ratio distribution is polarized,
the easy ones and the challenging ones are balanced. For the
nonrigid data set, the image pairs maintain a relatively high
inlier ratio, however, this data set is still challenging because
of its nonrigid nature.

The statistic results on the three data sets, such as precision,
recall, F-score, and run time, are summarized in Fig. 4. From
left to right, each column presents the results of a rigid data
set, projective data set, and nonrigid data set, respectively. For
the rigid data set, we see that all methods obtain good results.
This is due to the simple transformation model between the

image pairs. ICF has relatively low precision, as it is designed
for nonrigid feature matching, and the spatial constraint is
relaxed. Although GS and RANSAC achieve great accuracy,
our method shows its ability to preserve more correct matches,
leading to better recalls. LLT also has comparative results,
however, it needs a prior for the data, where the model has to
be manually set. The results also reveal that our method has
significant improvements over LPM. The recalls are close for
the two methods, however, with our improved interpretation
of local structure, our method obtains much better precisions
than LPM. The performances are clearly characterized with
the summary statistic, e.g., F-score. We can observe that
our method is the best, with obvious advantages. For the
projective data set, the situation has a slight change. ICF
shows its weakness to preserve correct matches, resulting in
the poor recall statistic. Except for ICF, all methods show great
performance. Our method remains to be the best due to the
robustness to outliers. In terms of both precision and recall, our
method consistently obtains excellent results, while the other
methods are less robust and fail in some cases. For the nonrigid
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Fig. 5. Quantitative comparisons of RANSAC [14], ICF [24], GS [33], LLT [1], LPM [16], and our mTopKRP on five image sets which are divided into
three groups according to their transformation models. (Left to right) Rigid (SAR, CIAP), projective (UAV, PAN), and nonrigid (FE). (Top to bottom) Initial
inlier ratio, precision, recall, F-score, and run time with respect to the cumulative distribution. A point on the curve with coordinate (x, y) denotes that there
are (100 ∗ x)% percent of image pairs, which have the performance value (i.e., inlier ratio, precision, recall, F-score, or run time) not more than y. The AP,
average recall (AR), AF, and ART are reported in the legend.
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data set, we can observe that LPM, LLT, and mTopKRP have
the best performance. This is due to that GS and RANSAC are
known to be sensitive to nonrigid deformation, and ICF always
has low recalls. Compared to LPM and LLT, our method
clearly obtains the best performance, which demonstrates its
effectiveness. The time costs of different methods are also
given in Fig. 5. Our method has a relatively low complexity,
as illustrated by the last half of the cumulative distribution,
which is only inferior to LPM. This result meets our expec-
tation, as our method is based on the efficient LPM method.
In summary, our method is privileged in terms of efficiency.

V. CONCLUSION

In this paper, we have proposed a simple yet efficient
mismatch removal method for robust feature matching of
remote sensing images named mTopKRP, which is based
on the stable neighboring topological relationship of feature
correspondences between the two images of the same object
or scene. In mTopKRP, we use the K -NN ranking lists
to denote the topology of feature points to be matched.
The weighted Spearman footrule distance is then redefined
and improved to measure the similarity between two top K
ranking lists of an image pair. Meanwhile, we formulate the
feature matching task as an iterative optimization problem
and introduce a closed-form solution, which can establish the
reliable correspondences in linearithmic time complexity. The
qualitative and quantitative results on various remote sensing
images have demonstrated the generality, robustness, and the
superior performance of our method for handling various
matching tasks in remote sensing and photogrammetry over
the state of the art. Moreover, its low time cost, only requiring
tens of milliseconds to handle over 1000 putative matches,
is significant for addressing real-time or large-scale tasks.
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