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a b s t r a c t 

This study proposes a novel feature-guided Gaussian mixture model (FG-GMM) for image matching, 

which generally requires matching two sets of feature points extracted from the provided images. The 

problem is formulated as the estimation of a feature-guided mixture of densities: a GMM is fitted to one 

point set, in which both the centers and local features of the Gaussian densities are constrained to coin- 

cide with another point set. The said problem is solved under a unified maximum-likelihood framework, 

in which an iterative semi-supervised expectation-maximization algorithm initialized by the confident 

feature correspondence is also implemented. This algorithm is flexible and has a general scope, which 

can handle both rigid and non-rigid image transformations. The transformation in the non-rigid case is 

specified in a reproducing kernel Hilbert space, and a sparse approximation is adopted to accomplish 

rapid implementation. Extensive experiments on different real images show that the proposed approach 

consistently outperforms other state-of-the-art methods, which validates its robustness. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Establishing reliable correspondence between two images is a

ey problem in computer vision and pattern recognition; this is-

ue is a critical prerequisite in different applications, such as 3D

econstruction, content-based image retrieval, tracking, image fu-

ion, super-resolution, and object detection and recognition [1–7] .

his study formulates the aforementioned scenario as a matching

roblem between two sets of discrete points; each point is an im-

ge feature extracted by a feature detector and has a local image

escriptor, such as the scale invariant feature transform (SIFT) [8] . 

Different methods have been proposed to address this match-

ng problem in the past few decades. A popular strategy involves

he construction of a set of putative point correspondence based

n a similarity constraint , which requires that points can only

atch with other points that have similar descriptors. False corre-

pondences are then removed, and the transformation parameters

either rigid or non-rigid) are estimated robustly based on a ge-

metric constraint , in which the matches must satisfy an underly-

ng geometrical requirement [1,9] . Several examples of this strat-
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gy include the hypothesize-and-verify random sample consensus

RANSAC) and analogous algorithms [10–12] (based on parametric

odels), as well as the smooth motion field interpolation meth-

ds [1,13,14] (based on non-parametric models). However, the pu-

ative set in the first step commonly contains only a small part of

ll the existing true correspondence instances [15,16] . This quan-

ity reduces further for low-quality or small overlapping images,

hich can result in an inadequate correspondence that computes

he transformation parameters in the second step. Therefore, de-

eloping a technique that can preserve most of the existing true

atches is largely advantageous. 

Estimating the point correspondence and spatial transformation

imultaneously instead of computing these two variables individu-

lly is another popular strategy [17,18] . These methods commonly

nvolve an iteration process that alternates between the correspon-

ence and transformation estimation. The iterated closest point

ICP) algorithm [19] is one of the more popular point matching ap-

roaches based on the aforementioned strategy. It adopts nearest-

eighbor relationships to assign a binary correspondence and then

mploys the estimated correspondence in refining the transforma-

ion. The nearest point strategy of ICP is alternatively replaced with

oft assignments [17] . Several probabilistic methods have also been

ntroduced recently [18,20,21] , where the matching is formulated

s the estimation of a mixture of densities utilizing Gaussian mix-

ure models (GMMs). The said matching is then solved through an
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t  

o  

O  
iterative expectation-maximization (EM) method. The aforemen-

tioned methods generate a correspondence matrix between the

two original feature sets, and as a result, they do not lose any

true matches. However, the feature points in these methods are

generally treated as pure spatial coordinates. In particular, the fea-

ture descriptors are entirely discarded, which can easily lead to a

suboptimal solution when severely degraded data, such as a large

outlier percentage, are obtained. Therefore, incorporating the local

appearance information of feature points into the formulation is

necessary, which helps establish better point correspondence. 

This study proposes a novel feature-guided GMM (FG-GMM) to

address the problem of robust image matching. This new formu-

lation can incorporate local feature information and preserve most

of the existing true matches in an image pair. Specifically, we for-

mulate point matching as the estimation of an FG mixture of den-

sities. A GMM is fitted to one point set, in which both the centers

and local features of the Gaussian densities are constrained to co-

incide with another point set. The said problem is solved under

a unified maximum-likelihood framework with a semi-supervised

EM algorithm, which is initialized by the confident feature corre-

spondence. The proposed algorithm is flexible and has a general

scope, which can handle both rigid and non-rigid image trans-

formations. Thus, it can solve different real-world matching tasks.

The transformation in the non-rigid case is modeled in a func-

tional space called reproducing kernel Hilbert space (RKHS) [22] ,

in which the transformation function has an explicit kernel repre-

sentation. We also provide a fast implementation based on sparse

approximation to improve the computational efficiency. The qual-

itative and quantitative experiments on different real images

demonstrate that our method can generate more correct cor-

respondence instances and accomplish better matching accuracy

compared with other state-of-the-art methods. 

This article is an extension of our earlier published work [23] .

Our primary new contributions are detailed as follows: First, we

extended our FG-GMM from non-rigid matching to rigid and affine

matching, and thus, our method can more flexibly and generally

solve different real-world matching problems. Second, we exten-

sively reviewed the up-to-date related work and pointed out the

strengths of the proposed method. Third, we presented more the-

oretical derivations and implementation details of our method,

which can better explain why and how our method works. Lastly,

we added several different datasets from the remote sensing, med-

ical imaging, computer vision, and multimedia communities for a

comprehensive experimental evaluation. We also applied our FG-

GMM to the content-based image retrieval problem, which further

demonstrates the effectiveness of our proposed method. 

2. Related work 

This section briefly reviews the background material applied as

reference for the current study. This material includes two method

types: the first type establishes a set of putative correspondence

and then removes false matches, whereas the second type solves a

correspondence matrix between point sets. 

2.1. Two-step strategy-based methods 

The matching problem has a combinatorial nature, thereby cre-

ating a large matching space of all the possible matches. A simple

problem of matching N points to other N points can lead to a to-

tal of N ! permutations even without considering the outliers [15] .

A popular strategy to establish a reliable point correspondence and

address the said issue involves two steps [1] : (i) computing a set of

putative correspondence, and (ii) then removing the outliers that

utilize geometrical constraints. Putative correspondence instances

are obtained in the first step by pruning the set of all possible
oint correspondence. This scenario is achieved by computing fea-

ure descriptors [8,24,25] at the points and removing the matches

etween points whose descriptors are excessively dissimilar. Lowe

8] proposed a distance ratio method that compares the ratio be-

ween the nearest and next-nearest neighbors against a predefined

hreshold to filter out unstable matches. Pele and Michael [26] fur-

her applied the earth mover’s distance to replace the Euclidean

istance in [8] to measure the similarity between descriptors and

mprove the matching accuracy. Guo and Cao [27] proposed a tri-

ngle constraint, which can performs better in exploring putative

orrespondence in terms of quantity and accuracy compared with

he distance ratio. Hu et al. [27] proposed the local selection of

 suitable descriptor for each feature point instead of employ-

ng a global descriptor during putative correspondence construc-

ion. A cascade scheme has been suggested to prevent the loss of

rue matches, which can significantly enhance the correspondence

umber [15,28,29] . 

Different methods have been proposed in the past decades, in-

luding statistical regression methods, resampling methods, non-

arametric interpolation methods, and graph matching methods,

o remove false matches from the putative set in the second step.

tatistics literature shows that the methods that minimize the L 1 
orm are more robust and can resist a larger proportion of outliers

ompared with quadratic L 2 norms [30,31] . Chen et al. [32] pro-

osed the utilization of alternate Hough and inverted Hough trans-

orms for robust feature matching, which can attain mutual veri-

cation of relevant correspondence. Liu et al. [33,34] proposed a

egression method based on adaptive boosting learning for 3D rigid

atching. Maier et al. [35] recently introduced a guided matching

cheme based on statistical optical flow; the said researchers ob-

ained promising results in terms of both accuracy and efficiency.

he most popular resampling method is RANSAC, which has sev-

ral variants such as MLESAC [11] and PROSAC [12] . These meth-

ds adopt a hypothesize-and-verify approach and attempt to ob-

ain the smallest possible outlier-free subset to estimate a provided

arametric model by resampling. The resampling methods rely on

 predefined parametric model, which become less efficient when

he underlying image transformation is non-rigid; these meth-

ds also tend to severely degrade if the outlier proportion be-

omes large [13] . Several non-parametric interpolation methods

1,13,36,37] have recently been introduced to address these issues.

hese methods commonly interpolate a non-parametric function

y applying the prior condition, in which the motion field as-

ociated with the feature correspondence is slow-and-smooth. In

ddition, Ma et al. [38,39] introduced a locality preserving strat-

gy which can produce accurate matching results within only sev-

ral milliseconds. Graph matching is another technique to solve

he matching problem; several representative studies include spec-

ral matching [40] , dual decomposition [41] , mode-seeking [15,42] ,

eformable graph matching [43] , adjacency tensor matching [44] ,

nd graph shift (GS) [45] . Graph matching provides considerable

exibility to the object model and delivers robust matching and

ecognition. However, it suffers from similar drawbacks of its non-

olynomial-hard nature. Recently, some learning-based methods

ave been developed for feature matching such as learning to find

ood correspondences (LFGC) [46] , which aims to train a multilayer

erceptron from a set of putative matches and the camera intrin-

ics under a parametric geometrical constraint, to label the testing

orrespondences as inliers or outliers. 

.2. Correspondence matrix-based methods 

Formulating this problem in terms of a correspondence ma-

rix between points along with a parametric or non-parametric ge-

metric constraint is another strategy for point correspondence.

ne of the best-known point matching approaches that follow
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his strategy is ICP [19] . ICP alternatively assigns a binary cor-

espondence utilizing nearest-neighbor relationships; it then per-

orms least square (LS) transformation estimation utilizing the es-

imated correspondence until a local minimum is reached. Guo

t al. [47] applied an ICP variant to range image registration. Liu

t al. [48] introduced a feature guided model for retinal image reg-

stration based on an affine transformation. Chui and Rangarajan

17] established a general framework for non-rigid matching called

PS-RPM, which replaces the nearest point strategy of ICP with soft

ssignments within a continuous optimization framework that in-

olves deterministic annealing. Boughorbel et al. [49] introduced

he Gaussian fields into rigid registration, which was later gener-

lized to the non-rigid setting in [50] and [51] . The image feature

atching based on Gaussian fields has also been investigated re-

ently in [52] and [53] . The registration problem has also been

olved by employing a robust estimator such as L 2 E [14,20,54] ,

hich attempts to obtain a robust transformation estimate. Point

atching has commonly been solved by probabilistic methods in

ecent years [18,21,55,56] . Ge et al. [57,58] specifically proposed

 global-local topology preservation method based on the coher-

nt point drift (CPD) to cope with highly articulated deformation

18] . These methods formulate matching as the estimation of a

ixture of densities utilizing GMMs, which is solved within the

aximum-likelihood framework and EM algorithm. In order to si-

ultaneously incorporate the global and local priors, Yang et al.

59] further proposed a robust method called global and local mix-

ure distance with thin plate spline (GLMDTPS) which has achieved

romising results. Alternatively, Zhang et al. [60] proposed to use

 dual-feature for registration of point sets, where the global-local

tructure is preserved by using two regularization terms. 

The aforementioned methods have been successfully imple-

ented in many scenarios. However, the two-step strategy loses

rue correspondence, whereas the correspondence matrix-based

ethods do not employ local appearance information. The present

tudy proposes a novel FG-GMM formulation with a local geomet-

ic constraint and provides an optimization strategy based on the

emi-supervised EM technique to address the said issues. 

. Method 

This section describes the proposed matching algorithm. We

tart by introducing the FG-GMM formulation to register feature

ets with associated descriptors and then provide the optimization

ethod based on semi-supervised EM. We then present a local ge-

metric constraint to ensure the well-posedness of the problem,

ollowed by the estimation of spatial transformation that includes

igid, affine, and non-rigid models. Finally, we analyze the compu-

ational complexity and provide the implementation details of our

ethod. 

.1. Feature-guided gaussian mixture model 

Suppose that we obtain two feature sets extracted from two

rovided images: a model feature set {X , S x } and a target feature

et {Y, S y } , where X = { x n } N n =1 and Y = { y m 

} M 

m =1 are 2D column

ector sets, which indicate the spatial positions of feature points.

 x = { S(x n ) } N n =1 
and S y = { S(y m 

) } M 

m =1 
are the associated feature de-

criptor vector sets. We attempt to establish accurate correspon-

ence instances between the two feature sets and simultaneously

olve the spatial transformation T to align the two original images

ccordingly. 

Point matching can be formulated as the estimation of a mix-

ure of densities without considering the associated feature de-

criptors. A GMM is fitted to the target points Y such that the

entroids of the Gaussian densities are constrained to coincide

ith the transformed model points T (X ) [18,20,21] . Let Z = { z m 

∈

 N+1 : m ∈ N M 

} be a set of latent variables, where each variable

 m 

assigns a target point y m 

to a GMM centroid T (x n ) (if z m 

= n,

 ≤ n ≤ N ) or to an additional outlier class (if z m 

= N + 1 ). The GMM

robability density function can then be defined as follows: 

p(y m 

) = 

N+1 ∑ 

n =1 

P (z m 

= n ) p(y m 

| z m 

= n ) . (1)

We generalize the formulation in this study to register fea-

ure sets with associated descriptors. In particular, let πmn be the

embership probability of the GMM, which is generally assumed

o be equal for all GMM components in the original formula-

ion (i.e., πmn = 

1 
N , ∀ m ∈ N M 

, n ∈ N N ) [18,21] . We instead assign its

alue based on the associated feature descriptor vectors S x and S y .
ence, we first match S x and S y according to a descriptor similar-

ty constraint, such as comparing the distance of the closest neigh-

or to that of the second-closest neighbor (i.e., distance ratio) and

atching them if the distance ratio is below a predefined thresh-

ld t [8] . We then assign πmn = τ if S ( x n ) is matched to S ( y m 

),

here parameter τ , 0 ≤ τ ≤ 1, can be considered as the confidence

f a feature correspondence. We set the remaining elements of

 πmn } M,N 
m =1 ,n =1 

to either (1 − τ ) / (N − 1) or 1/ N , so that they sat-

sfy 0 ≤πmn ≤ 1 together with ∀ m , 
∑ N 

n =1 πmn = 1 . Note that the

atched correspondence instances can be contaminated by some

alse correspondences and generally contain only a small part of

he true correspondence instances [16] . 

A popular assumption for point matching is the equal isotropic

ovariance σ 2 I on all GMM components and uniform distribution

/ a for the outliers [18,55] . We denote the set of unknown param-

ters as θ = {T , σ 2 , γ } , where γ ∈ [0, 1] is the outlier percentage.

he mixture model in Eq. (1) then takes the following form: 

p(y m 

| θ) = γ
1 

a 
+ (1 − γ ) 

N ∑ 

n =1 

πmn N (y m 

|T (x n ) , σ
2 I ) 

= γ
1 

a 
+ (1 − γ ) 

N ∑ 

n =1 

πmn 

2 πσ 2 
e −

‖ y m −T (x n ) ‖ 2 
2 σ2 . (2) 

The parameter set θ can be estimated by maximizing the like-

ihood or minimizing the negative log-likelihood as follows: 

 ( θ|Y) = −
M ∑ 

m =1 

ln p(y m 

| θ) , (3)

here we implemented the i.i.d. data assumption. The correspon-

ence probability between the two features { x n , S ( x n )} and { y m 

,

 ( y m 

)} can be defined as the posterior probability of the GMM

entroid given the target point: P (z m 

= n | y m 

) = πmn p(y m 

| z m 

=
 ) /p(y m 

) . The transformation T can thus be obtained from the op-

imal solution θ∗. 

.2. The semi-supervised EM algorithm 

The parameters of the mixture model can be estimated in sev-

ral ways, such as the EM algorithm, gradient descent, and vari-

tional inference. The EM algorithm [61] is a technique to learn

nd infer in the context of latent variables. This algorithm alter-

ates between the expectation step (E-step) and the maximiza-

ion step (M-step). We follow a standard notation [62] and remove

everal terms that are independent of θ. Considering the negative

og-likelihood function ( Eq. (3) ), the complete-data log-likelihood

s then expressed as follows: 

 ( θ, θ
old 

) = M P ln σ 2 − M P ln (1 − γ ) − (M − M P ) ln γ

+ 

1 

2 σ 2 

M ∑ 

m =1 

N ∑ 

n =1 

P (z m 

= n | y m 

, θ
old 

) ‖ y m 

− T (x n ) ‖ 

2 , (4) 
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where M P = 

∑ M 

m =1 

∑ N 
n =1 P (z m 

= n | y m 

, θ
old 

) ≤ M. 

E-Step : This step attempts to estimate the posterior distribu-

tions of the latent variables (i.e., p mn = P (z m 

= n | y m 

, θ
old 

) ) by ap-

plying the current estimated parameters, θold . Given that we have

some confident feature correspondence obtained according to the

associated descriptors, we select the semi-supervised EM [63] over

the original EM. We particularly compute p mn according to the fol-

lowing rules: 

(i) The target features { y m 

} with known correspondence are ex-

pected to serve as anchors that lead the EM iteration to

avoid or alleviate getting trapped into the local minima.

Thus, we set the following: 

p mn = πmn , 1 ≤ n ≤ N. (5)

(ii) The posterior distribution for the target features { y m 

} with

unknown correspondence can be computed by applying

Bayes rule as follows: 

p mn = 

P (y m 

| z m 

= n, θ
old 

) P (z m 

= n | θold 
) 

P (y m 

| θold 
) 

= 

πmn e 
− ‖ y m −T (x n ) ‖ 2 

2 σ2 

∑ N 
k =1 πmk e 

− ‖ y m −T (x k ) ‖ 2 
2 σ2 + 

2 γπσ 2 

(1 −γ ) a 

, 1 ≤ n ≤ N. (6)

The posterior distribution p mn is a soft assignment, which indi-

cates the degree to which the target feature { y m 

, S ( y m 

)} coincides

with the model feature { x n , S ( x n )} under the current estimated pa-

rameters, θold . 

M-Step : We compute the revised parameters as θ
new =

arg max θ Q ( θ, θ
old 

) . Considering the derivatives of Q ( θ) with re-

spect to γ and σ 2 , as well as setting them to zero, we thus obtain

the following: 

γ = 1 − M P /M, (7)

σ 2 = 

∑ M 

m =1 

∑ N 
n =1 p mn ‖ y m 

− T (x n ) ‖ 

2 

2 M P 

. (8)

Estimating the variance σ 2 with a large initial value is concep-

tually similar to deterministic annealing [17] , which applies the so-

lution of an easy (e.g., smoothed) problem to recursively provide

the initial conditions to increasingly more difficult problems. How-

ever, these approaches differ in several aspects, such as not requir-

ing any annealing schedule. Maximization Q ( θ) with respect to T 
is a complicated procedure, which will be discussed in the pro-

ceeding sections. 

We obtain the estimated spatial transformation T once the

semi-supervised EM converges. We can then superpose the trans-

formed model image on the target image to produce a mosaic im-

age. The feature correspondence can also be computed based on

the posterior distribution { p mn } M,N 
m =1 ,n =1 

. However, the posterior dis-

tribution p mn can suffer from outliers because the known corre-

spondence can contain false correspondence. We update p mn asso-

ciated with the known correspondences one more time by utilizing

Eq. (6) rather than Eq. (5) to address the said issue. We then obtain

the correspondence set I with a predefined threshold η: 

I = { (m, n ) : p mn > η, m ∈ N M 

, n ∈ N N } . (9)

We observed that the posterior probabilities of the samples in

practice are primarily (over 99%) either smaller than 0.01 or larger

than 0.99 after the EM iteration converges. Therefore, the selection

of η is not a priority in our method. 

Convergence analysis : The objective function (3) is not con-

vex, so any algorithm that determines its global minimum is un-

likely. However, a stable local minimum is often sufficient for many
ractical applications. Thus, our strategy is to apply the semi-

upervised EM technique, which adopts known correspondence to

ssign the latent variables. It makes the known correspondence

erve as anchors, so it can avoid getting trapped into the local min-

ma during the EM iteration. The adaptive estimate of the variance
2 also initializes the variance σ 2 with a large initial value. It then

tilizes the semi-supervised EM algorithm. The objective function

ecomes convex in a large region that can filter out many unstable

hallow local minima if the σ 2 value is sufficiently large. Hence,

e can likely determine a suitable minimum for large variance.

s σ 2 decreases, the objective function tends to change smoothly,

hich makes employing the old minimum as the initial value more

elpful in converging to a new suitable minimum. Therefore, we

an more probably reach a stable local minimum as the iterations

ontinue. This scenario is conceptually similar to deterministic an-

ealing [14,17] , which adopts the solution of an easy problem to

ecursively provide initial conditions to increasingly more difficult

roblems. 

.3. Local geometric constraint 

The spatial transformation T is estimated by minimiz-

ng a weighted empirical error Q (T ) = 

1 
2 σ 2 

∑ M 

m =1 

∑ N 
n =1 p mn ‖ y m 

−
 (x n ) ‖ 2 according to the objective function (4) . This condition is

ot tractable because the feature sets generally suffer from noise

nd outliers. The problem will also become large in the non-rigid

ase because the solution of T is not unique. The rough structures

f two feature sets extracted from an image pair must generally

e similar. For example, most neighboring feature points cannot

ove independently under deformation because of physical con-

traints. This scenario is particularly beneficial when the images

nvolve non-rigid or discontinuous motions [64] . Therefore, devel-

ping a local geometrical constraint that regularizes the feature

orrespondence can establish accurate matches, which is beneficial

or computing the spatial transformation. 

We introduce an efficient scheme similar to the locally linear

mbedding algorithm [57,65,66] to impose a local geometric con-

traint such as a regularizer. The said scheme is proposed as a

onlinear dimensionality reduction method to preserve the local

eighborhood structure in a low-dimensional manifold. First, the

 nearest neighbors for each point in X are searched. An N × N

eight matrix is denoted by W , and W i j = 0 is enforced if x j does

ot belong to the neighbor set of x i . Second, the reconstruction

rrors measured by the cost function (10) are minimized under a

onstraint, in which the rows of the weight matrix sum are equal

o one: ∀ i, 
∑ N 

j=1 W i j = 1 with W ij being nonnegative: 

(W ) = 

N ∑ 

i =1 

‖ x i −
N ∑ 

j=1 

W i j x j ‖ 

2 . (10)

he optimal weight W ij can be obtained by solving an LS problem.

hird, the local geometry of each model point after the transforma-

ion T can be preserved by minimizing a transforming cost term
 N 
i =1 ‖T (x i ) −

∑ N 
j=1 W i j T (x j ) ‖ 2 . Combining this term with Q (T )

ields the following minimizing problem: 

(T ) = 

1 

2 σ 2 

M ∑ 

m =1 

N ∑ 

n =1 

p mn ‖ y m 

− T (x n ) ‖ 

2 

+ λ
N ∑ 

i =1 

‖T (x i ) −
N ∑ 

j=1 

W i j T (x j ) ‖ 

2 . (11)

he said problem is composed of an empirical error term and a

egularized transforming cost term with a parameter λ> 0 that

ontrols the trade-off between them. 
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.4. Estimation of spatial transformation 

We next consider the modelling of the spatial transformation

 . The relationships between image pairs in image matching tasks,

uch as image stitching/mosaicing, are commonly modeled by rigid

r affine transformations [66] . This scenario is appropriate because

f the following factors: (i) these images are often captured at a

ong range (e.g., remote sensing images), and then they can be

pproximately considered as planar scenes; (ii) complex non-rigid

odels can easily lead to large error accumulation during con-

tructing large panoramas. Moreover, the simple rigid or affine

ransformations are also more preferable in matching low-quality

mage pairs to avoid over-fitting because of a lack of reliable cor-

espondence. However, the scenes in matching tasks such as ob-

ect/shape recognition, medical image registration, and image re-

rieval often involve transformations that cannot be approximated

y a simple linear model (e.g., different poses, non-rigid deforma-

ions, and irregular movements). A relatively complex non-rigid

odel is more preferable in this case [67] . The proposed formu-

ation in the present study is independent of the transformation

odel, and it can handle most common geometric distortions in

he image matching problem. We specify the transformation T 
or rigid, affine, and non-rigid cases separately to solve it utilizing

q. (11) . 

Rigid matching : For rigid matching, we define the transforma-

ion as T (x n ) = s Rx n + t , where R is a 2 × 2 rotation matrix, t is a

 × 1 translation vector, and s is a scaling parameter. By consider-

ng that R is orthogonal and the constraint ∀ i , 
∑ N 

j=1 W i j = 1 , the

bjective function in Eq. (11) becomes 

(R , t , s ) = 

1 

2 σ 2 

M ∑ 

m =1 

N ∑ 

n =1 

p mn ‖ y m 

− s Rx n − t ‖ 

2 

+ λ
N ∑ 

i =1 

‖ s (x i −
N ∑ 

j=1 

W i j x j ) ‖ 

2 , (12) 

.t. R 

T R = I , det (R ) = 1 . 

ote that the first term is similar to the absolute orientation prob-

em [18,68] , which is defined as min 

∑ N 
n =1 ‖ y n − s Rx n − t ‖ 2 . The

olutions of t and s are straightforward, while the solution of R is

omplicated due to the additional constraints. To obtain the closed

orm solution, we consider the following lemma [69] . 

emma 1. Let R be an unknown D × D rotation matrix and B be

 known D × D real square matrix. Let USV 

T be a Singular Value

ecomposition (SVD) of B , where UU 

T = VV 

T = I and S = d (s i ) is

 diagonal matrix with s 1 ≥, . . . , ≥ s D ≥ 0 . Then the optimal rota-

ion matrix R that maximizes tr (B 

T R ) is R = UDV 

T , where D =
 (1 , . . . , 1 , det (UV 

T )) . 

To solve the rotation matrix R , we rewrite the objective function

12) so that it has the form tr( B 

T R ). To this end, we first eliminate

he translation parameter t . Taking derivative of � with respect to

 and setting it to zero, we obtain: 

 = 

1 

M P 

Y 

T P1 − 1 

M P 

s RX 

T P 

T 1 = μy − s R μx , (13)

where X = (x 1 , · · · , x N ) 
T , Y = (y 1 , · · · , y M 

) T , P is an M × N matrix
ith the ( m, n )th element being p mn , μx and μy are the mean vec-

ors defined as: 

x = 

1 

M P 

X 

T P 

T 1 , μy = 

1 

M P 

Y 

T P1 . (14)

Substituting t back into the objective function and omitting the

erms that are independent of R and s , we obtain: 

(R , s ) = 

1 

2 σ 2 
tr (s 2 ˆ X 

T d (P 

T 1 ) ̂  X − 2 s ̂  Y 

T P ̂

 X R 

T ) 

+ λ · tr (s 2 X 

T QX ) , (15) 
here ˆ X = X − 1 μT 
x and 

ˆ Y = Y − 1 μT 
y are centered point matrices,

 = (I − W ) T (I − W ) . Specifically, we consider the term related to

 , which has the form: 

(R ) = − s 

σ 2 
tr (( ̂  Y 

T P ̂

 X ) T R ) . (16)

Therefore, by applying Lemma 1 , the optimal R of the problem

n Eq. (12) is given by 

 = UDV 

T , (17) 

here U and V can be obtained from USV 

T = svd ( ̂  Y 

T P ̂

 X ) , and D =
 (1 , det (UV 

T )) . 

To solve the scaling parameter s , we equate the corresponding

erivative of Eq. (15) to zero and obtain 

 = 

tr (( ̂  Y 

T P ̂

 X ) T R ) 

tr ( ̂  X 

T d (P 

T 1 ) ̂  X ) + 2 λσ 2 tr (X 

T QX ) 
. (18) 

Affine matching : Compared to the rigid case, affine match-

ng is simpler since the optimization is unconstrained. We define

he transformation as T (x n ) = Ax n + t , where A is a 2 × 2 affine

atrix, and t is a 2 × 1 translation vector. The objective function

q. (11) then becomes 

(A , t ) = 

1 

2 σ 2 

M ∑ 

m =1 

N ∑ 

n =1 

p mn ‖ y m 

− Ax n − t ‖ 

2 

+ λ
N ∑ 

i =1 

‖ A (x i −
N ∑ 

j=1 

W i j x j ) ‖ 

2 . (19) 

The solution of t is similar to the rigid case. The solution of A

an be obtained by directly taking the partial derivative of � , set-

ing it to zero, and solving the resulting linear system of equations.

he optimal t and A are given by: 

 = μy − A μx , (20) 

 = ( ̂  Y 

T P ̂

 X )( ̂  X 

T d (P 

T 1 ) ̂  X + 2 λσ 2 X 

T QX ) −1 . (21)

on-rigid matching : We define the transformation T as the initial

osition plus a displacement function f : T (x ) = x + f (x ) , where f

s modeled by requiring it to lie within a specific functional space

, namely a vector-valued RKHS [70] (associated with a particu-

ar kernel), as described in detail in the appendix. We define H by

 matrix-valued kernel 	 : R 

2 × R 

2 → R 

2 ×2 , and a diagonal Gaus-

ian kernel 	(x i , x j ) = κ(x i , x j ) · I = e −β‖ x i −x j ‖ 2 · I is chosen in this

aper. Thus we have the following theorem. 

heorem 1. The optimal solution of the objective function (11) in the

on-rigid case is given by 

 (x ) = x + f (x ) = x + 

N ∑ 

n =1 

	(x , x n ) c n , (22)

ith the coefficient set { c n : n ∈ N N } determined by a linear system 

( d (P 

T 1 ) + 2 λσ 2 Q ) �C = P 

T Y − ( d (P 

T 1 ) + 2 λσ 2 Q ) X , (23)

here C = (c 1 , · · · , c N ) 
T , � ∈ R 

N×N is the so-called Gram matrix with

i j = κ(x i , x j ) = e −β‖ x i −x j ‖ 2 . 

roof. For any given reproducing kernel 	, we can define a unique

KHS H N as in Eq. (31) in the appendix. Let H 

⊥ 
N 

be a subspace of

, 

 

⊥ 
N = { f ∈ H : f (x n ) = 0 , n ∈ N N } . (24) 

From the reproducing property, i.e. Remark 1 , ∀ f ∈ H 

⊥ 
N 

 

f , 

N ∑ 

n =1 

�(·, x n ) c n 

〉 

H 

= 

N ∑ 

n =1 

〈 f (x n ) , c n 〉 = 0 . (25)
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Algorithm 1: The proposed FG-GMM algorithm. 

Input : An image pair, parameters t , τ , K, λ, η, β , L 

Output : Correspondence set I , spatial transformation T 
1 Extract two feature sets using SIFT: {X , S x } , {Y, S y } ; 
2 Match X and Y using S x and S y with a distance ratio 

threshold t; 

3 Assign the membership probability πmn ; 

4 switch transformation model do 

5 case rigid 

6 Initialize R = I , t = 0 , s = 1 ; 

7 case affine 

8 Initialize A = I , t = 0 ; 

9 case non-rigid 

10 Initialize C = 0 ; 

11 Construct matrix � or E using definition of 	; 

12 endsw 

13 Set a to the volume of the output space; 

14 Initialize γ , p mn = πmn , σ 2 (using (8); 

15 Search the K nearest neighbors for each point in X ; 

16 Compute W by minimizing the cost function (10); 

17 repeat 

18 E-step : 

19 Update P by Eqs.~(5) and (6); 

20 M-step : 

21 switch transformation model do 

22 case rigid 

23 Compute ˆ X and 

ˆ Y according to Eq.~(14); 

24 Compute USV 

T = svd ( ̂  Y 

T P ̂

 X ) ; 

25 Update R , s , t by Eqs.~(17), (18) and (13); 

26 case affine 

27 Compute ˆ X and 

ˆ Y according to Eq.~(14); 

28 Update A , t by Eqs.~(21) and (20); 

29 case non-rigid 

30 Update C based on linear system (23) or (28); 

31 endsw 

32 Update σ 2 and γ by Eqs. (8) and (7); 

33 until Q converges ; 

34 Correspondence set I is determined by Eq. (9); 

35 Transformation T is obtained by estimated parameters. 

Table 1 

Computational complexities of our FG-GMM algorithm. 

Rigid Affine Non-rigid Non-rigid (fast) 

Time K 3 N + N 2 K 3 N + N 2 K 3 N + N 3 K 3 N + LN 2 

Space N 2 N 2 N 2 N 2 

 

t  

p  

c  

t  

c

3

 

p  

p  

W  

s  

v  

t  
Thus H 

⊥ 
N is the orthogonal complement of H N ; then every f ∈ H

can be uniquely decomposed in components along and perpendic-

ular to H N : f = f N + f ⊥ 
N 
, where f N ∈ H N and f ⊥ 

N 
∈ H 

⊥ 
N 

. That is to say,

∀ f ∈ H, we have f (x n ) = f N (x n ) . Therefore, the optimal displace-

ment function f comes from the space H N , and hence the optimal

solution of the objective function (11) has the form (22) . 

To solve the coefficient set C , we consider the terms of � that

are related to C and rewrite them in matrix form: 

�(C ) = 

1 

2 σ 2 
tr (C 

T �d (P 

T 1 ) �C + 2 C 

T �d (P 

T 1 ) X 

− 2 C 

T �P 

T Y ) + λtr (C 

T �Q�C + 2 C 

T �QX ) . (26)

Taking derivative of Eq. (26) with respect to C and setting it to

zero, we obtain the linear system in Eq. (23) . Thus the coefficient

set { c n : n ∈ N N } of the optimal solution is determined by the lin-

ear system (23) . �

Fast Implementation . The non-rigid model requires at least

O ( N 

3 ) computational complexity because it requires solving the

linear system (23) , which can cause a significant computational

problem in the case of large-scale feature sets. Consequently, we

adopt a sparse approximation and randomly select only a subset of

size L input points { ̃ x l } L l=1 
to have non-zero coefficients in the so-

lution expansion ( Eq. (22) ). This approach follows [71,72] who de-

termined that this approximation works properly, and that simply

selecting a random subset of the input points in this manner per-

forms equally with more sophisticated and time-consuming meth-

ods. Thus, we seek a solution as follows: 

f (x ) = 

L ∑ 

l=1 

	(x , ̃  x l ) c l . (27)

The selected point set { ̃ x l } L l=1 
is somewhat analogous to control

points. The linear system (23) becomes the following by utilizing

the sparse approximation: 

E 

T ( d (P 

T 1 ) + 2 λσ 2 Q ) EC 

s 

= E 

T P 

T Y − E 

T ( d (P 

T 1 ) + 2 λσ 2 Q ) X , (28)

where the coefficient matrix C 

s = (c 1 , · · · , c L ) 
T ∈ R 

L ×2 , and E ∈
R 

N×L with E i j = κ(x i , ̃  x j ) = e −β‖ x i −˜ x j ‖ 2 . 
We call our proposed matching algorithm as FG-GMM, which is

summarized in Algorithm 1 . 

3.5. Computational complexity 

The time complexity is near O ((K + N ) log N ) by utilizing the k-

d tree [73] to search the K nearest neighbors for each point in X .

The time complexity of obtaining the weight matrix W is O ( K 

3 N )

according to Eq. (10) because each row of W can be solved sepa-

rately with O ( K 

3 ) time complexity. The time complexities of solv-

ing the transformations for the rigid and affine cases are both

O (KN + MN) , so the total time complexities for rigid and affine

matching are both O (K 

3 N + MN + N log N) . The space complexities

for rigid and affine matching are both O (KN + MN) because of the

memory requirements for storing the weight matrix W and poste-

rior distribution matrix P . 

The time complexity of solving the linear system (23) is O (KN +
MN + N 

3 ) for the non-rigid case, so the total complexity can be

written as O (K 

3 N + MN + N 

3 ) . The space complexity scales are

O (KN + MN + N 

2 ) because of the memory requirements for storing

the Gram matrix �, as well as W and P . The time complexity to

solve the linear system (28) decreases to O (L 3 + L 2 N + LMN + KN) )

by applying the sparse approximation. Therefore, the total time

complexity is O (L 3 + L 2 N + LMN + K 

3 N + N log N) . The space com-

plexity decreases to O (MN + KN + LN) because of the memory re-

quirements for storing P, E and W . 
We generally have M ≈ N and M, N  L, K . Thus, the complexi-

ies can be simplified as listed in Table 1 . The time and space com-

lexities are all quadratic with respect to the scale of the provided

orrespondence set, where our fast implementation can lower the

ime complexity from cubic to quadratic in the non-rigid case. This

ondition is significant for large-scale problems. 

.6. Implementation details 

The performance of feature matching algorithms largely de-

ends on the coordinate system where feature points are ex-

ressed. We utilize data normalization to control this condition.

e specifically perform linear rescaling to allow the spatial po-

itions of the two feature point sets to have zero mean and unit

ariance. The constant a of the uniform distribution in Eq. (2) is

he area of the second image (i.e., the range of y m 

), which must
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1 The dataset is available at: http://download.intergraph.com/downloads/ 

erdas- imagine- 2013- 2014- example- data . 
2 A possible solution to retain more true matches is to enlarge the size of the 

putative set; however, this can rapidly decrease the correct match percentage in 

the putative set and severely degrade the matching performance [15] . 
3 Note that the affine model cannot accurately approximate the transformation 

here because the feature points are generally located on a hemisphere, such as 

the eyeball. However, the extracted feature points generally contain a few suitable 

matches and many outliers because of the low-quality multimodal retinal images. 

Therefore, complex models such as non-rigid functions can easily become trapped 

in overfitting. 
e set according to the data normalization. The experiments are

erformed on a laptop with 2.5 GHz Intel Core CPU, 8 GB memory,

nd MATLAB code, and all the codes were realized without spe-

ial optimization such as parallel computing or streaming single

nstruction multiple data extensions. 

Parameter setting . Eight parameters are primarily adopted in

ur method: t, τ , K, λ, η, γ , β and L . Parameter t is the dis-

ance ratio threshold utilized to establish the initial correspon-

ence based on feature descriptors. Parameter τ is applied to as-

ign the membership probability πmn , which is the confidence of a

nown correspondence. Parameter K controls the number of near-

st neighbors for linear reconstruction. Parameter λ controls the

nfluence of the local geometrical constraint on the transformation

 . Parameter η is a threshold, which is adopted to decide on the

orrectness of a correspondence. Parameter γ reflects our initial

ssumption on the inlier amount in the correspondence sets. Pa-

ameters β and L are employed in our non-rigid matching algo-

ithm, where the former determines how wide the range of inter-

ction between feature points, whereas the latter is the required

umber of control points for sparse approximation. We tune the

arameters on several image pairs in our experiments to attain

heir best performance and remain unchanged in all other ex-

eriments. We determined that many of the parameters can ac-

omplish suitable performance at different values, such as t, τ , λ,

, and γ . Specifically, we set t = 0 . 8 , τ = 0 . 9 , K = 15 , λ = 10 0 0 ,

= 0 . 5 , γ = 0 . 9 , β = 0 . 1 and L = 15 , throughout this paper. 

. Experimental results 

We test the performance of our proposed algorithm on real im-

ges. The open source VLFEAT toolbox [74] is employed to deter-

ine the putative correspondence of SIFT [8] . SIFT is a well-known

ethod to detect and describe local features in images that can be

pplied to perform reliable matching between different views of

n object or scene. This method is invariant to uniform scaling and

rientation, as well as partially invariant to affine distortion and il-

umination changes. We compute the ground truth transformation

y utilizing manually selected feature correspondence instances of

S fitting. We then apply the same overlap error criterion in [1] to

etermine the match correctness. Experimental results are evalu-

ted by precision and the number of identified correct matches.

recision is defined as the ratio of the identified correct match

umber and the preserved match number. Thus, 

 recision = 

# identified correct matches 

# preserved matches 
. (29) 

We compare our FG-GMM algorithm with five other state-of-

he-art matching algorithms, such as RANSAC [10] , ICF [13] , VFC

1] , LFGC [46] and CPD [18] . These five algorithms are chosen due

o that they are representatives of five different types of matching

ethods. In particular, RANSAC is a classic resampling method, ICF

s a regression method, VFC is an interpolation method based on a

low-and-smooth prior, LFGC is a deep learning-based method, and

PD is correspondence matrix-based method. We implement ICF

nd tune all parameters accordingly to determine the optimal set-

ings. The other four methods are implemented by adopting pub-

icly available codes. The parameters of the six methods are fixed

hroughout all the experiments. The following sections present the

xperiments on rigid, affine, and non-rigid image pairs, respec-

ively. 

.1. Results on rigid image pairs 

We first test the capability of our FG-GMM in handling rigid de-

ormation. We apply a dataset that consists of 65 image pairs cat-

gorized as follows: color-infrared aerial photograph image pairs
ith small overlap areas and SPOT image pairs that represent the

ame area captured at different times. The images sizes are from

391 × 1374 to 3086 × 2865, which were captured over Eastern Illi-

ois, USA (from the Erdas example data 1 ) and Shanghai, China. 

We first provide intuitive results of our FG-GMM on two typi-

al image pairs as presented in Fig. 1 . The first image pair contains

 small overlap, whereas the second involves extremely local il-

umination changes. Therefore, establishing reliable feature corre-

pondence is relatively challenging. Our results are presented at

he bottom row, which demonstrates that our FG-GMM can pro-

uce many correct feature matches. These results are beneficial

or many remote sensing applications, such as image mosaic and

hange detection. We also present the results of RANSAC [10] , a

lassic and widely adopted method for image matching, at the

op row for a performance comparison. We can observe that the

ANSAC results are acceptable because the rigid transformation is

elatively easy to estimate. However, RANSAC operates on a set of

utative correspondence, which suffers from missing true corre-

pondence. Hence, the numbers of identified correct matches are

uch smaller compared with our FG-GMM. 2 

The statistics of the precision and identified correct match

umbers of RANSAC, ICF, VFC, LFGC, CPD and our FG-GMM on the

ntire dataset are shown in Fig. 2 . All methods can generate ac-

urate matches on most image pairs because the rigid transforma-

ion is relatively simple. This condition can be observed from the

recision curves, where all methods have 100% precision on most

f the image pairs. However, when the outlier percentage in the

utative correspondence is extremely large for RANSAC, ICF, VFC

nd LFGC, the transformation estimate can fail. By contrast, our

G-GMM is more robust. Although its precisions are slightly lower

n several image pairs, its average precision is the largest and it

an also identify more correct matches. CPD fails on most image

airs because it ignores the feature descriptor information. Hence,

t severely degrades in the case of a large percentage of false

atches, which frequently occurs in low overlap or low-quality im-

ges. This scenario also justifies the reasonability of incorporating

ocal image features in our formulation. 

The average runtimes of the six methods on the test data are

isted in Table 2 , where we have excluded the cost of SIFT fea-

ure extraction for all methods. LFGC is the most efficient method

hich requires only dozens of milliseconds. RANSAC is also very

fficient because the few parameters involved in a rigid model sig-

ificantly decreases the iteration number. Nevertheless, the perfor-

ance of our FG-GMM is still acceptable, which is similar to ICF

nd VFC. However, CPD is slightly inefficient because it requires

epeated iterations to converge in the case of badly degraded data.

.2. Results on affine image pairs 

We then test the capability of our FG-GMM in handling affine

eformation. Thus, we conduct experiments on retinal pairs with

ifferent imaging modalities. Given that such image pairs are

ommonly obtained with similar viewpoints, an affine model is

ore preferable 3 Registering multimodal retinal images is a rela-

ively challenging task because of the large homogeneous texture-

http://download.intergraph.com/downloads/erdas-imagine-2013-2014-example-data
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Fig. 1. Matching results of RANSAC [10] (top) and our FG-GMM (bottom) on two typical remote sensing image pairs. 

Fig. 2. Precision (left) and identified correct match number (right) of RANSAC [10] , ICF [13] , VFC [1] , CPD [18] and our FG-GMM with respect to the cumulative distribution 

on the 65 remote sensing image pairs. The numbers in the boxes represent the average precision and the average number of identified correct matches. In addition, a point 

on the curve with coordinate ( x, y ) denotes that there are 100 ∗x percents of image pairs which have precision or identified match numbers no more than y . 

Table 2 

Average Run Times of different methods on the 65 remote sensing image pairs. Bold indi- 

cates the best result. 

RANSAC [10] ICF [13] VFC [1] LFGC [46] CPD [18] FG-GMM 

Time (s) 0.26 1.52 2.04 0.04 6.81 2.09 
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less/nonvascular regions, non-uniform intensity/contrast distribu-

tions, and different pathologies that cause degradation. We select

two groups of retinal images that involve red-free and fundus auto-

fluorescence as applied in [75] . The images have a resolution range

of 640 × 480 to 1280 × 960 pixels. We construct 200 image pairs

from these images for quantitative evaluation. 

We again initially provide intuitive results of our FG-GMM on

two typical image pairs as presented in Fig. 3 . Results show that

our method can generate many suitable matches, even with low-

quality images that have extreme noise and pathology that cause

degradation in the right pair. We also present the RANSAC results

[10] at the top row for a performance comparison. We can observe

that the identified feature matches are much fewer; the feature

matching procedure of RANSAC completely fails in the second pair

because of the extreme noise, which results in few true matches

and high percentage of outliers. 
The precision statistics and identified correct match numbers

f our FG-GMM and the five other methods on the entire dataset

re shown in Fig. 4 . Our method can evidently produce the best

esults for both evaluation criteria. Our curves are almost consis-

ently above those for all the other methods, and the average cor-

ect match number of our method is about twice to thrice those of

ANSAC and VFC. The sufficient correct matches can guarantee the

ccuracy of the transformation estimation. VFC and LFGC have a

table performance, and they perform slightly better than RANSAC

or the averages of the evaluation criteria. CPD again completely

ails on most image pairs, which generated the worst precision and

orst identified correct match number. 

The average runtimes (excluding the cost of SIFT feature extrac-

ion) of the six methods on the test data are shown in Table 3 . The

erformance has a similar trend to that on the rigid dataset. Note

hat the runtimes on this dataset are lowered for most methods
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Fig. 3. Matching results of RANSAC [10] (top) and our FG-GMM (bottom) on two typical multimodal retinal image pairs. 

Fig. 4. Precision (left) and identified correct match number (right) of RANSAC [10] , ICF [13] , VFC [1] , LFGC [46] , CPD [18] and our FG-GMM with respect to the cumulative 

distribution on the 200 multimodal retinal image pairs. 

Table 3 

Average Run Times of different methods on the 200 multimodal retinal image pairs. Bold 

indicates the best result. 

RANSAC [10] ICF [13] VFC [1] LFGC [46] CPD [18] FG-GMM 

Time (s) 0.49 0.27 0.57 0.02 5.12 1.06 
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Table 4 

Average Run Times of different methods on the dataset of Mikolajczyk et al. 

[76] . Bold indicates the best result. 

RANSAC [10] ICF [13] VFC [1] LFGC [46] FG-GMM 

Time (s) 3.54 2.12 5.47 0.19 16.35 
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a  
ecause the feature numbers extracted from the low-quality reti-

al images are significantly decreased. 

.3. Results on non-rigid image pairs 

The capability of our FG-GMM in handling non-rigid deforma-

ion is tested in this section. We conduct experiments on the

ataset of Mikolajczyk et al. [76] , which contains 40 image pairs

ither of planar scenes or captured by camera in a fixed position

uring acquisition. Therefore, these images always obey homogra-

hy. The ground truth homographies are supplied by the dataset.

he dataset contains eight folders, in which the images involve

iewpoint change, scale and rotation, image blur, light change, and

PEG compression. Several examples are shown in Fig. 5 . 

The statistics of the precision and the identified correct match

umber for RANSAC, ICF, VFC, LFGC and our FG-GMM with fast im-

lementation are shown in Fig. 6 . We do not report the CPD re-

ults in this section because it fails on most of the image pairs.

he results show that our FG-GMM has the best average preci-
ion (95.21%) and largest average identified correct match number

922.34), followed by VFC and RANSAC. Note that RANSAC suitably

orks on this dataset because the image transformation satisfies a

arametric model such as homography. 

Table 4 provides the average runtimes (excluding the cost of

IFT feature extraction) of the five methods on the test data. The

erformance in this case has a similar trend, and the runtimes

f all methods are relatively longer compared with the results of

he other test data. This scenario is due to the average number

f extracted SIFT features for an image in this dataset being ap-

roximately 2,630, which must be a large-scale problem for im-

ge matching. We also report the original version of our FG-GMM
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Fig. 5. Examples of images in the dataset [76] . 

Fig. 6. Precision (left) and identified correct match number (right) of RANSAC [10] , ICF [13] , VFC [1] , LFGC [46] and our FG-GMM with respect to the cumulative distribution 

on the dataset of Mikolajczyk et al. [76] . 
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on this dataset. The average precision and identified correct match

number are approximately 95.84% and 920.15, respectively, which

are similar to the results of the fast FG-GMM. However, the average

runtime increases to approximately 34.23 s per image pair. There-

fore, the fast implementation can significantly lower the computa-

tional complexity without sacrificing accuracy. 

Note that the homography is essentially a linear function, which

is one of the simplest forms of non-rigid transformation. However,

obtaining the ground truth transformations of image pairs that in-

volve deformable objects with non-rigid/nonlinear motions is un-
ikely because the transformation model is unknown and generally

omplex. Therefore, establishing the ground truth feature matches

s difficult. No non-rigid image dataset that contains ground truth

eature matches is publicly available to the best of our knowledge.

e also conduct experiments on several typical image pairs that

nvolving deformable objects to test our FG-GMM in such a chal-

enging case, where the match correctness is determined by man-

al checking. The intuitive performance of our FG-GMM is shown

n Fig. 7 , where the precision values are 97.85%, 99.07% and 99.29%.

he motion fields related to the three image pairs are provided
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Fig. 7. Results of FG-GMM on three typical image pairs (e.g., T-shirt, Peacock and Fox ) involving deformable objects. The precisions and identified correct match numbers 

are (97.85%, 288), (99.07%, 107), and (99.29%, 139). Blue and red lines/arrows indicate correct and false matches, respectively. The right column is the corresponding motion 

fields, where the head and tail of each arrow correspond to the positions of feature points in two images. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Table 5 

Comparison of precisions and preserved correct match numbers on 

image pairs involving deformable objects. 

T-shirt Peacock Fox 

RANSAC [10] (89.21%, 124) (96.61%, 57) (97.33%, 73) 

ICF [13] (95.00%, 76) (97.67%, 42) (98.70%, 76) 

VFC [1] (96.18%, 126) (98.44%, 63) (98.94%, 93) 

LFGC [46] (95.04%, 115) (96.72%, 59) (96.74%, 89) 

CPD [18] (90.00%, 45) (96.92%, 63) (95.31%, 61) 

FG-GMM ( 97.85% , 288 ) ( 99.07% , 107 ) ( 99.29% , 139 ) 
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g  
t the right column of Fig. 7 . We can observe the relatively large

egree of the non-rigid deformation, where different parts of the

cenes have different motion manners. However, the variation in

he motion field is slow-and-smooth, which guarantees that our

ethod suitably works in this case. 

The results of the five other state-of-the-art methods are shown

n Table 5 . Our FG-GMM evidently has consistently better preci-

ions and can identify more true matches. RANSAC has satisfying

recision values because it can identify a majority of the putative

orrespondence instances that satisfy a geometric constraint. How-
ver, the geometric constraint is based on a parametric model (e.g.,

omography in our experiments), which may not approximate the

eal non-rigid deformation properly with a complex deformation.

his scenario can be observed from the T-shirt pair with a larger

egree of deformation, in which RANSAC has a much lower pre-

ision. By contrast, the deep learning-based method LFGC and the

wo non-parametric-based methods ICF and VFC have better preci-

ion values. Our evaluation again shows that the CPD method com-

letely fails on all the three pairs (i.e., we omit the detailed results

n this section for clarity). We alternatively test CPD on two feature

ets obtained from the putative sets, such as those in RANSAC, ICF,

nd VFC. The results are listed in Table 5 , which are still relatively

nsuitable compared with VFC. In particular, VFC only needs to re-

ove false matches from a putative set, and it has initial corre-

pondence information unlike in CPD, which can solve the match-

ng problem. 

.4. Ablation experiments 

Note that in our model, we use the semi-supervised EM al-

orithm rather than the standard EM algorithm to optimize the
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Fig. 8. Schematically illustration of the image retrieval results in every two rows. For each group of results, the left image is the query image, and the rest 10 images are 

the 10 most similar images retrieved by ICF [13] (the top row) and our FG-GMM (the bottom row) which is listed in descending order. Red boxes indicate false results. 

Fig. 9. Precisions (left) and recalls (right) of RANSAC [10] , ICF [13] , GS [45] and our FG-GMM with respect to RN , i.e., the required number of images to be retrieved for a 

given image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Ablation study of our FG-GMM. The pairs in the table are the average pre- 

cisions and average preserved correct match numbers of three scenarios 

on the three datasets in Figs. 2 , 4 and 6 . Scenario 1 means using the orig- 

inal EM instead of semi-supervised EM, scenario 2 means without using 

the local geometric constraint, and scenario 3 denotes our FG-GMM. 

Rigid Affine Non-rigid 

Scenario 1 (90.36%, 546.57) (93.94%, 62.79) (92.33%, 898.43) 

Scenario 2 (91.13%, 551.28) (88.70%, 57.31) (81.56%, 832.68) 

Scenario 3 ( 92.02% , 562.31 ) ( 95.32% , 66.64 ) ( 95.21% , 922.34 ) 

d  

a  

s  

t  
likelihood in Eq. (4) , which can avoid or alleviate getting trapped

into the local minima during the EM iteration, and hence promotes

the matching performance. In addition, we also use the local geo-

metric constraint to regularize the solution of spatial transforma-

tion T , so that we can obtain a stable and meaningful solution

when there exists noise, outliers, or non-rigid deformations. In this

section, we conduct ablation experiments to verify the effective-

ness of the semi-supervised EM and local geometric constraint. To

this end, we consider the following two scenarios. 

On the one hand, we use the original EM to optimize the like-

lihood in Eq. (4) , and fix all the other settings as the same as our

FG-GMM. In particular, we update the posterior distribution p mn 

using only Eq. (6) , without using Eq. (5) to serve as anchors. On the

other hand, we set λ = 0 in Eq. (11) and fix all the other settings

as the same as our FG-GMM, which means to abandon the local

geometric constraint. We test the two scenarios on all the three
atasets, including the rigid, affine and non-rigid datasets. The

verage precisions and identified correct match numbers of two

cenarios on the three datasets are reported in Table 6 . In addi-

ion, we also provide the statistics of our FG-GMM for comparison.
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rom the results, we see that both the semi-supervised EM and lo-

al geometric constraint play an important role in improving the

atching performance. In particular, for the local geometric con-

traint, its importance becomes evident as the transformation be-

omes complex. 

.5. Application to near-duplicate image retrieval 

Finally, we test our FG-GMM for near-duplicate image retrieval

nd compare it with RANSAC [10] , ICF [13] , and GS [45] on the

alifornia-ND dataset [77] . We select all of the 12 classes that have

0 or more images. We also randomly select 10 images for evalu-

tion in each class. Therefore, the test data contains 120 images

hat generate a total of 7,260 image pairs. We run the matching

lgorithms on all 7,260 image pairs and utilize the number of pre-

erved matches as the similarity between image pairs. We then re-

urn a ranked list for a provided image according to its similari-

ies with every other image in the dataset. The performance is also

haracterized by precision and recall, where precision is defined as

he ratio of the retrieved correct image number and total retrieved

mage number. The recall is defined as the ratio of the retrieved

orrect image number and total correct image number. We denote

he required image number to be retrieved for a provided image

s RN . The precision is valid for RN ≤ 10, and the recall is valid for

N ≥ 10 because each class contains 10 images. We utilize our FG-

MM with the non-rigid model for testing because the images in

his dataset involve deformable objects with non-rigid motions. 

Several typical retrieval results are shown in Fig. 8 and com-

ared with ICF to provide some intuitive performance analysis of

ur FG-GMM. Results show that ICF can only retrieve several cor-

ect images. The matching score of ICF becomes severely degraded

hen an image pair of a similar scene involves large viewpoint or

ose changes. Hence, it fails to retrieve the image. By contrast, our

G-GMM is more robust to these distortions, and it can retrieve

ost of the correct images at the top of the ranking list. 

The statistic retrieval results of the four methods in the dataset

re presented in Fig. 9 . Our FG-GMM evidently outperforms all

ther methods and obtains the best precision and recall, followed

y RANSAC. Specifically, the average retrieved correct image num-

ers of RANSAC, ICF, GS, and our FG-GMM for RN = 10 are approx-

mately 6.63, 4.80, 5.11 and 7.13, respectively. 

We also measure the retrieval performance of the so-called

ulls-eye score [78] , which is defined as the ratio of the total num-

er of correct images among the 20 most similar images to the

ighest possible number (i.e., 10). The best possible rate is 100%.

he bulls-eye scores of RANSAC, ICF, GS, and our FG-GMM are ap-

roximately 73.67%, 58.42%, 60.50% and 80.25%, respectively. Our

ethod again evidently showcases the best performance. 

. Conclusion 

This paper reports on a proposed FG-GMM for robust image

atching that undergoes either rigid or non-rigid transformation.

 key characteristic of our approach is that it can preserve more

rue feature matches and incorporate local feature information dur-

ng matching. The semi-supervised EM algorithm is introduced to

olve the problem, which is formulated as maximum-likelihood

stimation. We also provide an efficient implementation of our

ethod to decrease the computational complexity without signifi-

antly lowering the matching quality. 

Experiments on publicly available datasets demonstrate that

ur approach generates superior results compared with those of

ther state-of-the-art methods. On the one hand, our FG-GMM

eeks feature correspondences from the original feature sets rather

han removing outliers from a putative match set, which is able

o avoid loss of ‘true feature matches’ and hence generates more
eature matches. On the other hand, the feature guided strategy

nsures good initialization of our method and hence it can con-

erge to a satisfying result even when the data is badly degraded,

or example, there are very few true matches or a great many false

atches in the data. Therefore, our method has particular advan-

ages in matching low-quality (e.g., strong noise or low resolution)

mages, small overlap images, images with complex non-rigid de-

ormations, etc. We also have shown that FG-GMM is beneficial for

 real-world visual task such as content-based image retrieval. 

Our method in this paper aims to establish accurate correspon-

ences between two sets of feature points, where each point is

ssociated with a local image descriptor. This image descriptor is

sed to assign the membership probability of the GMM in our

ormulation, and hence plays a pivotal role in our feature-guided

atching. In fact, our method can also be used to address the point

et registration problem where each point only consists of a spa-

ial position. This is because that we can construct a descriptor

or each point based on its neighborhood structure with respect

o other points in the point set. For example, the shape context

eature [24] is a preferred descriptor in such case to achieve the

oal of feature-guided matching. In addition, our method is not in-

uenced by the dimension of the input data, and hence it also ap-

lies to 3D matching problem such as 3D point cloud registration.

e leave these interesting extensions for future work. 

cknowledgements 

This work was supported in part by the National Natural Sci-

nce Foundation of China under Grant No. 61773295 , in part by the

eijing Advanced Innovation Center for Intelligent Robots and Sys-

ems under Grant 2016IRS15 , and in part by the 111 project under

rant B17040 . 

ppendix. Vector-valued reproducing kernel Hilbert space 

We review the basic theory of vector-valued reproducing kernel

ilbert space, and for further details and references we refer to

70,79] . 

Let X be a set, for example, X ⊆ R 

P , Y a real Hilbert space with

nner product (norm) 〈 · , · 〉 , ( ‖ · ‖ ), for example, Y ⊆ R 

D , and H
 Hilbert space with inner product (norm) 〈·, ·〉 H 

, ( ‖ · ‖ H 

), where

 = D = 2 in our problem. Note that a norm can be induced by an

nner product, for example, ∀ f ∈ H, ‖ f ‖ H 

= 

√ 〈 f , f 〉 H 

. And a Hilbert

pace is a real or complex inner product space that is also a com-

lete metric space with respect to the distance function induced

y the inner product. Thus a vector-valued RKHS can be defined as

ollows. 

efinition 1. A Hilbert space H is an RKHS if the evaluation maps

 v x : H → Y (i.e., e v x (f ) = f (x ) ) are bounded, i.e., if ∀ x ∈ X there

xists a positive constant C x such that 

 e v x (f ) ‖ = ‖ f (x ) ‖ ≤ C x ‖ f ‖ H 

, ∀ f ∈ H. (30)

A reproducing kernel 	 : X × X → B(Y) is then defined as:

(x , x ′ ) := e v x e v ∗x ′ , where B(Y) is the Banach space of bounded

inear operators (i.e., 	( x, x ′ ), ∀ x , x ′ ∈ X ) on Y, for example,

(Y) ⊆ R 

D ×D , and e v ∗x is the adjoint of ev x . We have the follow-

ng two properties about the RKHS and kernel. 

emark 1. The kernel 	 reproduces the value of a function f ∈
at a point x ∈ X . Indeed, ∀ x ∈ X and y ∈ Y, we have e v ∗x y =

(·, x ) y , so that 〈 f (x ) , y 〉 = 〈 f , 	(·, x ) y 〉 H 

. 

emark 2. An RKHS defines a corresponding reproducing kernel.

onversely, a reproducing kernel defines a unique RKHS. 

More specifically, for any N ∈ N , { x n } N n =1 ⊆ X , and a reproduc-

ng kernel 	, a unique RKHS can be defined by considering the

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100012237
https://doi.org/10.13039/501100012176
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completion of the space 

H N = 

{ 

N ∑ 

n =1 

	(·, x n ) c n : c n ∈ Y 

} 

, (31)

with respect to the norm induced by the inner product 

〈 f , g 〉 H 

= 

N ∑ 

i, j=1 

〈 	(x j , x i ) c i , d j 〉 ∀ f , g ∈ H N , (32)

where f = 

∑ N 
i =1 	(·, x i ) c i and g = 

∑ N 
j=1 	(·, x j ) d j . 
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