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Automatic Stitching for Hyperspectral Images Using
Robust Feature Matching and Elastic Warp

Yujie Zhang, Zhiying Wan, Xingyu Jiang , and Xiaoguang Mei

Abstract—Hyperspectral images, which contain not only spatial
information but also rich spectral information, have been exten-
sively applied to the fields of agriculture, urban planning, etc.
However, it is difficult for a single image to cover a large area. There-
fore, it requires to take photos of various parts and apply image
stitching technology to obtain a panoramic hyperspectral image.
When the viewpoint of the scene changes a lot, the ghost issue will
occur with traditional methods. In order to get the high-precision
resultant panoramas, this article proposes an automatic image
stitching algorithm for hyperspectral images using robust feature
matching and elastic warp. Our method contains two stages. The
first stage is to choose one band as reference band and obtain the
panorama in a single band. In particular, we extract feature points
by scale-invariant feature transform. Then, we propose an efficient
algorithm called multiscale top K rank preservation algorithm,
for establishing robust point correspondences between two sets of
points. Next, we adopt robust elastic warp to obtain the panorama
of each band. The second stage is to stitch all remaining bands
based on the transformation obtained in the first stage and fuse
the information of all bands together to get the final panoramic
hyperspectral image. Extensive experiments have demonstrated
the effectiveness of our proposed method.

Index Terms—Elastic warp, feature matching, hyperspectral
images, image stitching.

I. INTRODUCTION

R ECENTLY, hyperspectral imaging technique has been
extensively applied to a wide range of fields from remote

sensing to biomedicine [1]. The spectral information provided by
hyperspectral images is more abundant than RGB images thanks
to the high spectral resolution and wider sensing spectrum [2].
The spectrum of hyperspectral images provides us a new way
to achieve higher accuracy in the identification of land covers
and the diagnosis of some diseases. With the development of
unmanned aerial vehicles (UAVs), the application of hyperspec-
tral images in remote sensing has been improved. However, to
achieve high spatial resolution, the instantaneous field of view
will be small. It is difficult to obtain information of a large area
through a single image. Therefore, the study of image stitching
for hyperspectral images is meaningful.

Generally, image stitching includes two steps, image match-
ing and radiometric normalization. Image matching is typically
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solved in a two-step manner [3], [4]. The common idea is to
extracting a sparse set of features first, based on establishing
correspondences between points, edges, corners, or other geo-
metric entities [5]–[9]. The well-known scale-invariant feature
transform (SIFT) [5] is very robust, and speeded up robust
features (SURF) [6] improve the computation time of SIFT
by using a fast local gradient computation. Spectral-spatial
SIFT (SS-SIFT) extracts 3-D features from hyperspectral im-
ages, but the computation time is not feasible for real-time
applications. To improve the registration accuracy between two
images, it is required to remove the false matches after feature
point extraction and matching. Random sampling consensus
(RANSAC) [10], [11] is a representative method for eliminating
false matches. But RANSAC can be sensitive to selecting the
correct noise threshold that defines which data points fit a model
instantiated with a certain set of parameters. On the basis of
RANSAC, maximum likelihood estimation sample consensus
[12] and progressive sample consensus [13] were proposed as
effective variants. Although these methods achieve good results,
they cannot be applied to all situations. When the motion of
image scene is nonrigid, which cannot be characterized by a
parametric model, these methods will be invalid. To solve this
problem, the nonparametric fitting methods were introduced,
such as vector field consensus (VFC) [14], [15] and locality
preserving matching (LPM) [16], [17]. However, the results
obtained by these methods are not perfect if there is a large
proportion of outliers.

For image alignment, global deformation method AutoStitch
was first introduced by Brown and Lowe [18]. It estimates an
optimal global transformation matrix for each input image and
uses the matrix to align all images, which is not parallax-tolerant.
To achieve better stitching quality, methods based on space-
varying transformation were proposed, such as as-projective-
as-possible (APAP) [19] and shape-preserving-half-projective
(SPHP) [20]. In these methods, the input images are warped
according to the computed deformations over the meshed plane.
APAP adopts local adaptive projective transformation and ob-
tains good results in the overlapped region. But APAP is similar
to global projection and still remains the problem of distortion.
SPHP solves this problem by using projective transformations,
which is gradually changed to a global similarity transformation
across the image. Combining APAP with SPHP, better results
can be obtained. Based on the aforementioned works, adaptive
as-natural-as-possible (ANAP) [21] was proposed to reduce
the negative impact brought by unnatural rotation. However,
unnatural rotation and scaling still exist while stitching multiple
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Fig. 1. Proposed flow of the hyperspectral image stitching.

images. A more robust stitching method natural image stitching
with the global similarity prior (NISwGSP) was proposed by
Chen and Chuang [22].

Although the stitching methods for RGB images have been
greatly improved these years, they cannot be applied to hy-
perspectral images directly. Different from RGB images, each
pixel of hyperspectral images has tens or hundreds of magnitude
values corresponding to its wave bands. Therefore, the stitching
algorithm should be efficient to avoid a large amount of calcu-
lation. For UAV-based hyperspectral images, the images may
undergo scale change, parallax, unnatural rotation, or nonrigid
transformation. The existing algorithm for hyperspectral images
stitching proposed by Yuan et al. [23] is only applicable to
medical hyperspectral images without parallax. Fang et al. [24]
proposed their method by using the geometric data of images,
which is limited and cannot be applied for complex scenes.

To solve the aforementioned challenge, we propose a robust
method for hyperspectral images stitching according to the
characteristics of hyperspectral remote sensing images, which
is stable even when the images undergo scale change, rotation,
or nonrigid transformation. We divide our work into two stages.
The first one is to choose one band as reference band and obtain
the panorama in a single band. We extract and match feature
points by SIFT algorithm [5] and remove the false matches by
our previously proposed multiscale Top K Rank Preservation
(mTopKRP) [25] algorithm. Next, we construct robust elas-
tic warp and reproject them to obtain seamless panorama in

greyscale. The method is parallax-tolerant and robust, which
can deal with complex local distortion. The second stage is to
stitch all the remaining bands using the matrix obtained from
the first reference band and fuse all band information to obtain
the final hyperspectral panorama.

This article is an extension of our previous work [25], and
the main contributions contain two aspects. First, we introduce
a new stitching strategy and apply it to hyperspectral images,
which combines the mTopKRP algorithm and elastic warp to
achieve high precision even when the scene suffers large view
point changes. Second, we provide a more comprehensive eval-
uation of our method with more discussions, and the qualitative
result analysis demonstrates the advantages of our method. The
spectrum analysis of the stitched image shows the accurate
results after the spectral matching.

II. METHODOLOGY

In this section, we introduce a new method for hyperspec-
tral images stitching, including feature matching based on
SIFT [5] and mTopKRP algorithm, as well as robust elastic warp
and multibands fusion to obtain hyperspectral panorama. The
flowchart of our method is shown in Fig. 1.

A. Image Stitching in a Single Band

The large number of bands in hyperspectral images leads
to a significant increase in their data size. Therefore, directly
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extracting feature points from hyperspectral data and stitching
them will generate a large amount of calculation, which will take
a lot of time and reduce the stitching efficiency. Due to that the
image of each band contains the same spatial information, we
choose one band as reference band and perform image stitching
in a single band. We use the same transformation in the other
bands to obtain panorama in all bands.

1) Multiscale Top K Rank Preserving Matching: In the gray
image stitching, feature points extraction and matching are
challenging due to local terrain changes, scale change, rotation,
parallax, and nonrigid transformation existing in UAV-based hy-
perspectral images. To achieve scale, rotation, and illumination
invariance, researchers usually use local descriptor to extract
feature points, which leads to many false matches. Former algo-
rithms for eliminating false matches typically use a parametric
model and obtain unsatisfying results with large proportion
of false matches. To solve the aforementioned challenge, the
method based on mTopKRP [25] is introduced to eliminate the
false matches, which can perform well in the aforementioned
tough situations.

First, we use SIFT algorithm to extract feature points in im-
ages I1 and I2. Then, we can obtain a set of N putative matches
S = {(xi, yi)}Ni=1 where xi and yi are the pixel coordinates. In
order to get reliable correspondence, we need to remove the false
matches precisely and acquire an optimal inlier set. We denote
the optimal inlier set as R∗. The optimal solution is

R∗ = argminC (R;S, λ) . (1)

Through observation, the relationship among the neighbor-
ing feature points in a remote sensing image is usually stable
and only changed slightly, even when the image undergoes
scale change, rotation, or nonrigid transformation. According
to mTopKRP, the similarity of the feature points’ K-NN is used
to measure whether the feature points are correctly matched and
the cost function C is defined as

C (p;S, λ) =

N∑

i=1

pi (ci − λ) + λN (2)

where ci =
1
M

∑M
m=1 Dkm(σ(xi), σ(yi)), vector p is associ-

ated with S, pi ∈ (0, 1). pi = 1 denotes that the match is correct
and this feature point is in inlier sets. On the contrary, pi = 0
denotes that the match is wrong and this feature point is in outlier
sets.Dkm(σ(xi), σ(yi)) denotes the distance between the topK
ranking lists of the two feature points’ K-NN.

The cost function also applies a multiscale strategy, which
measures the local K neighborhoods ranking similarity and
calculates the cost function under different scales of K. We
define a set of different K with K = {Km}Mm=1. The ideal
situation is that ci should be zero. Therefore, our cost function
tries to obtain the maximum inlier number and keep the cost
value to a minimum at the same time.

Given a putative match, the K-NN of all feature points can be
calculated. Next, all the cost values of {ci}Ni=1 can be calculated.
It is easy to observe that any putative match with a cost smaller
than the parameter λ will lead to a negative term and decrease
the objective cost function. Therefore, the optimal solution can

be defined by the following criterion:

pi =

{
1, ci ≤ λ

0, ci > λ
. (3)

In this case, the optimal inlier set R∗ can be determined by

R∗ = {i|pi = 1, i = 1, 2, . . . , N}. (4)

2) Construct Robust Elastic Warps: We have obtained the
optimal inlier set of input images through mTopKRP, the next
step is to calculate the homography matrices between two adja-
cent images corresponding to the input order. After local homog-
raphy is obtained, the image I1 can be projected onto the image
I2 to achieve alignment of the image. However, there are certain
drawbacks associated with the use of projective transformation,
such as shape distortion. Since the hyperspectral images to be
stitched were taken by UAV, the shooting height is not high
enough to avoid parallax. Some parts of the stitching images
are severely stretched and magnified unevenly. Besides, the
mosaic looks ghosted. Thus, we adopt the robust elastic warps to
avoid projective distortion (stretched shapes and enlarged sizes).
A homography H is estimated, as shown in (5). Suppose the
matched feature points: p = [x, y, 1]T and q = [u, v, 1]T , then
we have

⎡

⎣
u
v
1

⎤

⎦ ∼
⎡

⎣
h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ (5)

where∼ denotes equality up to a scale factor. The transformation
of formula (5) can be expressed as

03×1 =

⎡

⎣
01×3 −pT vpT

pT 01×3 −upT

−vpT upT 01×3

⎤

⎦ · h = Ah, ‖h‖2 = 1 (6)

where h = [h11, h12, . . . , h33]
T , h ∈ R9×1 and A = [a1,a2,

. . . ,aN ]T , ai ∈ R2×9, i = 1, 2, 3, . . . , N .
Then, we formulate (6) by DLT as

h = argmin
h

N∑

i=1

‖aih‖2 = argmin
h

‖Ah‖2. (7)

The image I1 is divided into C1 × C2 grids, and the coordi-
nates of the grid vertices in the homogeneous coordinate system
are p∗. The local homography at arbitrary position p∗ in I1 can
be calculated by the MDLT [19] as

h∗ = argmin
h

N∑

i=1

‖ωi
∗aih‖2 = argmin

h
‖W∗Ah‖2 (8)

where ωi
∗ = max(exp(−‖p∗ − pi‖2/σ2), λ), σ is a scale

parameter and λ ∈ [0, 1], W∗ = diag([ω1
∗ , ω

1
∗ , ω

2
∗ , ω

2
∗ , . . . ,

ωN
∗ , ωN

∗ ]).
Equation (8) can be solved by the smallest right singular

vector of W∗A [26]. However, the distortion problems can
be caused by extrapolating the deformation inclination to the
nonoverlapping region [27], [28]. Li et al. [29] linearly reduced
the deformation function g(x, y) to zero across the nonoverlap-
ping region. This method reduces the distortion of the image
outside the overlapping region to some extent, but the image
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Fig. 2. Scenes for stitching were gathered by GaiaSky-mini sensor provided by SiChuan Dualix Spectral Imaging Technology Company, Ltd., which is a
UAV-borne hyperspectral sensor whose wavelength ranges from 400 to 1000 nm. We synthesize the pseudocolor image by selecting the 92th (700.2 nm), 47th
(547.6 nm), and 13th (436.5 nm) bands.

will still appear obvious distortion in our experiment. One
way to overcome this problem is to use weighted optimization
algorithm [30].

The image I2 needs to be mapped to the image I1 by the
homography matrix. The weighted deformation function in the
x-direction of the image I2 coordinates can be expressed as

gμ(x, y) = μg(H(x, y)), (0 < μ(x) < 1). (9)

The value of μ linearly decrements from 1 to 0 from the left
to the right of the image. The weighted deformation function in
the y-direction changes in the same way, expressed as

hμ(x, y) = μh(H(x, y)), (0 < μ(x) < 1). (10)

According to the value of μ(x), the region with large shape
variable of image I2 has smaller deformation for image I1.
Therefore, the distortion in overlapping boundary region is
small. Next, we combine our warp with the global similarity
transformation. After the refined point matches are received
from the mTopKRP, we estimate the global similarity transfor-
mation S by

JA =
n∑

i=1

‖Spi − qi‖2 (11)

where S =
( c −s tx
s c ty

)
. {pi,qi}, i = 1, . . . , n are the point

matches.
The application of similar transformations has largely pre-

served the original perspective and mitigated distortion. We
mix the homography and the similarity transformation using

the formula as

Hq = μhH+ μsHs (12)

with μh from 0 to 1 across the source image I1. The target image
I2 is transformed as

Hp = HqH
−1. (13)

3) Linear Blending: We obtain the robust elastic warp to
unify the image pixels to be stitched into one coordinating
system. In the standard system, the transformed coordinates may
not be integer values, so it is necessary to use the weighted
method to perform gray-scale interpolation in the overlapped
areas of the image.

Our method requires all the images to be input in order. Using
the weighted function (linear) can merge many images into one
image, and realize the linear blending of the all input images
according to the proportion of each image.

The key point is to match the spectral values of the pixel
points in the overlapped region. Due to that the spectral values
of corresponding points of different bands in the overlapping
area are different, we need to find out the relationship between
the spectral value of the corresponding points on the same band.
In this article, we composite images by linear blending [31]. The
main idea is to generate weight map for each image. Typically,
the weight at center is large, whereas the weight at edge is small.
Each output pixel is a weighted average of inputs. This algorithm
can effectively get seamless stitched images.
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TABLE I
COMPARISON OF SIFT AND OTHER FEATURE POINTS DETECTION ALGORITHMS

Algorithm 1: Automatic Stitching for Hyperspectral Images
Using Robust Feature Matching and Elastic Warp.

Input: Hyperspectral images Ii, i = 1, . . . ,K, each of
which have M bands.

Output: Panoramic hyperspectral image without parallax
1: Choose the �M/2�th band as reference band
2: In the reference band, extract feature points by SIFT

and obtain a putative matching set S = {(xi, yi)}Ni=1

3: Construct ranking lists of each feature points based on
multiscale K-NN

4: Calculate the cost value {ci}Ni=1 using (6) and obtain
the inlier sets R∗

5: for i = 1 to K − 1 do
6: j = i+ 1
7: Calculate the homography H and similarity Hs

using (7)
8: Define nonoverlapping region and calculate the

global projectivity by (9) and (10)
9: Obtain the global warp by mixing the H and the Hs

using (12)
10: end for
11: Map the warped images Ii, i = 1, . . . ,K by (14) and

(15)
12: Stitch the panorama using the same global warp for

the remaining (M − 1) bands
13: Linear fusion of all band spectral information

For the input warped images Ii, i = 1, 2, . . . ,K, the stitched
image can be expressed as

I =

∑K
i=1 wiIi∑K
i=1 wi

(14)

where wi is a weighted function of Ii, and it can be calculated
as

wi(x, y) = 1− di(x, y)

di,max
(15)

where di(x, y) is the distance from point (x, y) to the center
of Ii, and di,max is the maximum distance from the point of Ii
where the pixel value is not 0 to the center point.

B. All Bands Fusion

In this section, we use the robust elastic warp of one band as
the global warp to stitch the panorama of other remaining bands,
and then we can get all band spatial information. We choose
two known pairs of corresponding points. For the single-band
image stitching, the two images have the same wavelength, but
the spectral values are different. Then, the spectral values of all

Fig. 3. Feature point matching of SIFT [5], SURF [6], and SS-SIFT [7], and
false matches removing by RANSAC: 1254 tentative matches using SIFT and
557(44.42%) inlier matches using RANSAC; 80 tentative matches using SURF
and 49(61.25%) inlier matches using RANSAC; and 82 tentative matches using
SS-SIFT and 64(78.04%) inlier matches using RANSAC (top to bottom and
left to right). Black lines connect putative matching points. Blue ones connect
correct matching points.

TABLE II
COMPARISON OF THE EVALUATION INDICATORS AMONG SIX ALGORITHMS

points in the overlapping region of this band are calculated using
formula (14). After the single band spectral stitching, both the
spatial stitching and spectral matching of the single band have
been completed. That is to say, the image stitching has been
realized for the single band. When each point in the overlapping
region of a single band gets a new spectral value, by the same
method, all overlapping regions of each band get a new spectral
value. The spectral value of the nonoverlapping region still uses
the spectral value of the reference image. Therefore, we can
get the spectrum after the spectral matching. In order to better
illustrate the algorithm process, we show the algorithm flowchart
in Algorithm 1.

III. EXPERIMENTS AND ANALYSIS

In this section, we use different remote sensing image datasets
to test our proposed method. First, we compare different feature
point extraction algorithms, including SIFT [5], SURF [6], and
SS-SIFT [7], on hyperspectral image (HSIs) datasets. Then,
we compare the feature points matching algorithms, includ-
ing RANSAC [10], LPM [16], [17], VFC [14], [15], and our
mTopKRP, on remote sensing date image set with both rigid and
nonrigid transformations. Next, we compare our robust elastic
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Fig. 4. Quantitative comparisons of RANSAC [10], VFC [14], [15], LPM [16], [17], and our mTopKRP on synthetic-aperture radar (SAR), color infrared aerial
photograph (CIAP), and UAV. Recall, Precision, and F-score (left to right) with respect to the cumulative distribution. The average Precision (AP), average Recall
(AR), and average F-score (AF) are reported in the legend.

warp with ANAP [21], NISwGSP [22], and ELA [29]. At last,
we obtain our panoramic hyperspectral image.

First, we evaluate the feature point extraction algorithm on
HSI datasets. This dataset contains 18 HSIs, with the size
of 960× 1057. Our data are obtained by GaiaSky-mini push-
broom airborne hyperspectral imaging system. Hyperspectral
images have a spectral range from 400 to 1000 nm with a total
of 176 bands. The shooting height of the image is 300 m. Fig. 2
shows all of our images.

We compare the number of feature points and matching points
and time. The results are listed in Table I.

From the aforementioned result, we can find out that SS-SIFT
requires too much time, which reduce our efficiency. It shows
that SIFT not only can detect more feature points but also require
less time. So, we choose SIFT algorithm to detect feature points.

We show the results of SIFT, SURF, and SS-SIFT using the
traditional RANSAC algorithm to remove outliers. We find that
RANSAC causes the matching points to be concentrated in areas
with complex textures (see Fig. 3). It can be concluded that
the RANSAC cannot ensure that the matched feature points
are evenly distributed in the overlapping region. Besides, some
imperceptible wrong matches are still considered correct, which
is inevitable.

Then, we compare different false match removal algorithms.
The result of false match removal is shown in Fig. 4. The
performance values (i.e., Precision, Recall, and F-score) are
summarized. The F-score is used for evaluating the matching
performance, which is defined as [9]

F-score =
2× Precision × Recall
(Precision + Recall)

(16)

where the Precision is defined as the ratio of the identified correct
match number and the preserved match number, and Recall is
defined as the ratio of identified correct match number and the
correct match number contained in the putative set. Compared
to RANSC, VFC, and LPM algorithm, our mTopKRP algorithm
improves F-score. Our method shows its ability to preserve more
correct matches, leading to better recalls. We can observe that
our method is the best with obvious advantages.

To verify how well the new measuring criterion works, we
randomly select in total 46 remote sensing image pairs, such as
CIAP, UVA, and SAR. To evaluate our algorithm, we use the
following remote sensing image datasets.

Fig. 5. F-score with respect to the cumulative distribution by using the whole
feature set to construct local neighboring structure on 46 remote-sensing image
pairs. The best average F-score and its threshold λ are AF = 0.9905 and λ =
0.7.

1) CIAP: This dataset consists of 40 pairs of CIAP, with the
size of 700× 700. These images are already orthorecti-
fied. Although they only have rigid transformation, the
overlap areas are quite small, which is common in image
stitching problem.

2) UAV: This dataset consists of 35 pairs of color images,
which are of resolution 600× 337 and captured by a UAV
over a piece of farmland. These images may come across
projective distortion or nonrigid transformation due to the
unstable imaging condition.

3) SAR: This dataset contains 34 image pairs corrupted with
strong noise. For each image pair, the two images are
separately obtained by SARs on a satellite and on an UAV,
respectively.

The results are shown in Fig. 5. It can be concluded that
our algorithm works best when λ is 0.7 and F-score is 0.9905.
Clearly, our method successfully identifies most of the true
correspondences, and only a few are wrongly classified. These
results prove the generality and robustness of our method.

Next, we compare our result with the result obtained by
ANAP [21], NISwGSP [22], and ELA [29] on HSI datasets. The
results are shown in Figs. 6 and 7. The former is a gray-scale
image after single-band stitching, and the latter is an RGB
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Fig. 6. Qualitative comparison of the stitching performance. The first row is the corresponding stitching results of ANAP [21], NISwGSP [22], ELA [29],
and our proposed method of single-band. The rest rows are the three representative areas of each resulting image. (a) Result of ANAP. (b) Result of NISwGSP.
(c) Result of ELA. (d) Result of our warp.

Fig. 7. Final hyperspectral stitching result: After the fusion of RGB color
image with the 176 bands hyperspectral image at pixel level, the hyperspectral
remote sensing image with color display is obtained by our method. We synthe-
size the pseudocolor image by selecting 92th (700.2 nm), 47th (547.6 nm), and
13th (436.5 nm) bands.

pseudocolor image after all bands fusion. We can see that
the images of ANAP, NISwGSP, and ELA after stitching all
show obvious distortion, and serious ghosting can be seen after
zooming-in. The results show that our method aligns the images
more accurately, generating a more natural stitched image with
no visible artifacts in the overlapping region and alleviating the
perspective distortion problem in nonoverlapping regions.

Traditionally, the evaluation metrics of image mosaic quality
mainly include mean value, information entropy, mutual infor-
mation, SNR, mean grads, etc. In this article, the metrics we
used are three functions based on gradient, frequency domain,
and space distribution, respectively. EOG is an energy gradient
that reflects the change between gray levels. DFT reflects the
overall activity of an image space. Variance refers to the discrete
degree of gray value of image pixel relative to the mean value.
The expressions are as follows:

EOG

=
∑

x

∑

y

{[f(x+1, y)−f(x, y)]2+[f(x, y + 1)− f(x, y)]2}

(17)

DFT =
1

MN

∑

μ=0

∑

ν=0

√
μ2 + ν2P (μ, ν) (18)

Variance =
1

M ×N

∑

x

∑

y

(f(x, y)− λ)2 (19)

where
√

μ2 + ν2 indicates the distance from the pixel to the cen-
ter pixel, which is used to emphasize the high-frequency compo-
nents in the spectrum;M andN are the image size;P (μ, ν) is the
square of the image spectrum; and λ = 1

M×N

∑
x

∑
y f(x, y).
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Fig. 8. Point A and its surrounding points in I1 and point A′ in I2, and point B and its surrounding points in I1 and point B′ in I2, which are enlarged to the
pixel level.

Fig. 9. Spectrum analysis. The left-hand side one uses A and A′ representing Image1 and Image2, and the right-hand side one uses B and B′ representing
Image1 and Image2. The blue and green curves are the spectrum of the two original images before stitching. The blue one is the spectrum of the reference image.
The yellow one is the spectrum that recalculates the fusion parameters for each band. The red one is the spectrum after the improved algorithm completes the fitting
again.

Table II lists the detailed experiment results. The higher value
of EOG, DFT, and Variance means the better quality of the
image.

Experiment results show that our warp can achieve good
effect. Compared to the ELA, our warp increases the EOG, DFT,
and Variance by approximately 7.31%, 39.43%, and 15.77%.
Our warp is 7.16%, 32.76%, and 15.23% higher than ANAP, re-
spectively. Our method works well and preserves the naturalness
of the image content.

IV. SPECTRUM ANALYSIS

Compared with RGB images, hyperspectral images are spe-
cial for the spectrum, which is important in the identification
or classification of land covers. Therefore, besides the spatial
stitching, we also pay attention to the spectral changes of the
hyperspectral images after stitching. The following is the spec-
trum analysis of the overlapping region.

The spectral angle distance (SAD) [33] determines the spec-
tral similarity between two spectra by calculating the angle

between the spectra. This algorithm treats the spectra as vectors
in a space with dimensionality equal to the number of bands. By
calculating SAD between the test spectrum ai and the reference
spectrum bi, the similarity between them can be estimated

SAD = arccos

[ ∑
aibi√∑

a2i
√∑

b2
i

]
(20)

where i is the number of bands, SAD ∈ [0, 1]. The smaller the
SAD value is, the closer the cosine value is to 1 and the closer
the two curves are.

In this experiment, we use HSI datasets. First, the 88th band is
taken as an example, and we find the corresponding point pairs
of the overlapping areas of the two adjacent images. Then, we
record them as point A and A′, B and B′ (see Fig. 8). Since
the image I1 is the reference image, the spectrum after fusion
should be similar to that of image I1. We use SAD to analyze
the similarity degree. The difference between the new algorithm
and the original one is that the same fusion parameters are used
for each band in the linear blending. It can be seen that after the
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use of the improved algorithm, the spectrum is close to I1. It can
be calculated that for the points A and A′, the SAD value of I1
and I2 is 0.0894, and the SAD value of the stitched image and I1
is 0.0308. For B and B′, the SAD value of I1 and I2 is 0.0471,
and the SAD value of the stitched image and I1 is 0.0212.

After stitching, the spectrum has obvious sawtooth from the
wavelength of 600 nm. We find out the spectrum of I1 and eight
points around the points A and B (see Fig. 9). It can be seen
that the spectrum of points A and B in the original image is also
quite different from that of the eight surrounding pixels. For
A, the SAD values are 0.0562, 0.0617, 0.0273, 0.0411, 0.0301,
0.0175, 0.0388, and 0.0530, respectively. ForB, the SAD values
are 0.0372, 0.0335, 0.0279, 0.0389, 0.0248, 0.0368, and 0.0331,
respectively. It can also be seen from the observation of the
spectrum trend that the difference of it between point A and
the surrounding points starts from the wavelength of 600 nm
and for B, it starts from 700 nm. When using the weighted
fusion algorithm, the coordinate value of each pixel in the image
is an integer value, but the coordinate point transformed by
the geometric transformation model is not necessarily being an
integer value. So, we need to get the integer coordinate value of
the nearest points of the coordinate point. Thus, the transformed
point will be affected by the surrounding points, and its SAD
values with the surrounding points are large, which explains the
reason why the fitted spectrum is not smooth.

According to the results of spectrum analysis, we can prove
that our method guarantees the integrity of the spectral informa-
tion. It can be drawn from SAD that the spectrum of the stitched
image and the reference image is similar, which means the spec-
trum distortion is very low. Therefore, this method is effective
for the stitching of hyperspectral remote sensing images.

V. CONCLUSION

The main contribution of this article is the design of an
automatic image stitching algorithm for hyperspectral images,
which combines the SIFT algorithm, the mTopKRP algorithm,
the robust elastic warps, and the spectral matching algorithm.
First, we propose a new mismatch removal method for robust
feature matching called mTopKRP, which is based on the sta-
ble neighboring topological relationship of feature correspon-
dences. Next, the robust elastic warp is adopted to reduce the
distortion of the image. After blending the 18 images for one
band, we repeat this process using the same global warp and
fusion parameters for the other 175 bands. The mTopKRP
algorithm ensures the accuracy of feature point extraction and
matching, robust elastic warp avoids some shape distortion, and
the spectral matching algorithm makes the spectrum consistent
with the original one. Finally, the experimental results on real
hyperspectral images demonstrate that our method can obtain
high-precision stitching results.
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