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ABSTRACT Non-rigid point set registration is a fundamental problem in many fields related to computer
vision, medical image processing, and pattern recognition. In this paper, we develop a new point set
registration method by using an adaptive weighted objective function, which formulates the alignment of
two point sets as a mixture model estimation problem. The correspondences and the transformation are
jointly recovered by using the expectation–maximization algorithm to obtain the promising results. First,
the correspondences are established using local feature descriptors, and the adaptation parameters for the
mixture model are computed from these correspondences. Then, the underlying transformation is recovered
by minimizing the adaptive weighted objective function deduced from the mixture model. We demonstrate
the advantages of the proposed method on various types of synthetic and real data and compare the results
against those obtained using the state-of-the-art methods. The experimental results show that the proposed
method is robust and outperforms the other registration approaches.

INDEX TERMS Registration, expectation-maximization (EM) algorithm, thin-plate spline (TPS), objective
function, mixture model, point set.

I. INTRODUCTION
Registration of point sets is an important fundamental and
challenging research area widely employed in many fields
related to computer vision [1]–[7]. With a salient structure
represented by the points, many applications in these fields,
such as image fusion [8], structure computation [9], and
image point correspondence [10], can be typically considered
as point set registration problems [3]. The point set registra-
tion aims to find the correct point matches between two sets
of key-points extracted from the input data and to identify
the underlying transformation that warps one point set to the
other.

To align the two point sets accurately, many methods
have been proposed in the past few decades. Depending on
the applications and the different characteristics of the data,
two main approaches, namely rigid or non-rigid registra-
tion, to point set registration have been developed. Rigid
point set registration is relatively easy as it contains only

rotation, scaling, and translation. Numerous point set regis-
tration approaches, (e.g., [3], [4], [11]) have been proposed.
Most of them can achieve excellent performance. In contrast,
handling the non-rigid registration issue is very complex in
that the underlying non-rigid spatial transformation, which
allows scaling and anisotropic skews, is usually complicated,
unknown, and difficult to model [5]. However, non-rigid
registration is a problem of critical importance in com-
puter vision as it has been faced in a considerable variety
of real-world tasks, such as shape classification [12], [13],
medical image mosaic [1], [13], visual navigation [14], and
hand-written character recognition [15], and so on.

To illustrate the problem addressed in this paper, an exam-
ple of a simple alignment of two point sets is shown in Fig. 1.
As shown in Fig. 1(b), we cope with the data (i.e., the corre-
spondences between two sets of points). A non-rigid point set
registration method aims to estimate the underlying transfor-
mation that aligns the model point set onto the target point
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FIGURE 1. An example of the non-rigid point set registration. (a) Point sets of the model (red circles) and
target (blue pluses) shapes. (b) Correspondences between two sets of points and outliers (black star).
(c) Registration result.

set and identifies the inliers (i.e., the points marked using
red circles and blue plus signs in Fig. 1(c)) and the outliers
(i.e., the points marked with black stars in Fig. 1(c)).

Many methods have been presented to handle the above
mentioned problem. The Iterated Closest Point (ICP) is a
popular point registration approach for matching the two
point sets due to its simplicity and effectiveness. The ICP
uses an iterated optimization method to solve the corre-
spondence and the underlying transformation. In this iter-
ative process, a binary correspondence recovered by using
the nearest-neighbor relationships is used to refine the esti-
mated transformation, and vice versa. The main limitation
of this algorithm is that the binary correspondence gener-
ates a number of local minima. The performance of ICP
will degenerate quickly when input data contain outliers.
To overcome the drawback of ICP due to the binary respon-
dence, a soft-assignment algorithm for the optimal corre-
spondences between the two point sets was proposed by
Chui and Rangarajan [5]. They present a general framework
to match non-rigid points. The soft assignment and the
non-rigid transformation are jointly solved by using the
deterministic annealing technique. This approach is consider-
ably similar to the expectation-maximization (EM) algorithm
and outperforms ICP. Belongie et al. [15] developed a rich
descriptor called shape context (SC) for shape matching.
The SC, which captures the distribution of the relative posi-
tions between the reference point and the remaining points,
is used for solving the correspondence problem. The aligning
transform is recovered using the correspondence. However,
this approach ignores robustness when it estimates the spatial
mapping from the correspondence.

To address the robustness issue, variousmethods have been
proposed. Myronenko and Song [16] proposed a coherence
point drift (CPD) algorithm for both rigid and no-rigid point
set registration. They formulate the point matching problem
as a probability density estimation problem and more specif-
ically, a Gaussian mixture model (GMM) is used to represent
one point set to the other one. GMM is robust evenwhen input
data contain missing points, noise, and outliers. In order to
capture spatially asymmetric distributions, Dou et al. [17] use
the asymmetric Gaussian model to represent the point sets.
Zhou et al. [18] proposed a point registration method based

on Student’s-t mixture model. They formulate the vari-
ous mixture proportion as Dirichlet distribution and assign
them to corresponding mixture components. A vector field
consensus algorithm for point matching was proposed by
Ma et al. [19], [20]. They explore the idea of considering the
point correspondence as a vector field interpolation between
the two point sets. Zhou et al. [21] proposed a probabilistic
inference method based on global and local regularizations
for nonrigid feature matching. Yan et al. [22] proposed multi-
graph matching algorithms based on the composition based
optimization procedure. Recently, Lian et al. [23] proposed a
globally optimal algorithm for point matching. They formu-
late the matching problem as a concave quadratic assignment
problem with a few nonlinear terms by eliminating the trans-
formation variables. A normal rectangular branch-and-bound
approach based on rectangular subdivision is used to com-
pute the optimal solution. More recently, an adaptive discrete
hypergraph matching was proposed by Yan et al. [24]. They
iteratively update the higher-order assignment by a linear
assignment approximation. Yang et al. [13] introduced robust
point registration approaches based on the local geometri-
cal preserving. To preserve the local structure of point set,
Bai et al. [25] formulate the local constraint with k-connected
neighborhood as weighted least square error item. Other
relatedwork includesGMMbasedmethod [26], locally linear
transforming based method [27], [28], and guided locality
preserving feature matching method [7].

Carefully observing the red rectangular region in Fig. 1(c),
we can find that some registration results are perfect and
the others are not. The problem is the following: May equal
using all these correspondences to recover the underlying
transformation always produce optimal results? Obviously,
the answer is no. Therefore, it is reasonable to assume
that if the contribution of each correspondence to the final
transformation is adaptively determined in the registration
error, the registration results may be further accurate. In this
paper, we present an adaptive weighted objective function
for the alignment of two point sets, in which the non-rigid
point set registration is formulated as a mixture model
estimation problem. We recover both the correspondences
and the underlying mapping by using the expectation-
maximization (EM) algorithm. Firstly, a local feature such as
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SC is used to establish the correspondences between the two
point sets. The mixture weights for GMM are obtained from
these correspondences. Then, the underlying transformation
is computed by minimizing an adaptive weighted objec-
tive function developed from the mixture model. Moreover,
the thin-plate spline (TPS) [29] is used to model the spatial
mapping between the two point sets.

The rest of the paper is constructed as follows: Section 2
presents the proposed adaptive weighted objective function
for the non-rigid registration, which can robustly recover
the transformations from the contaminated correspondences.
The point registration results are provided in Section 3, and
the conclusions are drawn in Section 4.

II. METHOD
In this section, we consider the non-rigid point set registration
problem as the estimation of the mixture-density parameters
and recover the underlying transformation by minimizing
the adaptive weighted objective function deduced from the
mixture model. We also present the implementation details.

A. MIXTURE MODEL
Given two point sets - the model point set X = {xj, j =
1, · · · ,M} with point xj = (xxj , x

y
j , 1) and the target point set

Y = {yi, i = 1, · · · ,N } with point yi = (yxi , y
y
i , 1)- our goal

is to align X to Y by computing a coherent transformation T
that warps the model points to the target points. In this paper,
we formulate the alignment of the two point sets as the
mixture-density parameter estimation, where Y represents
the observed data points from a Gaussian distribution and
the transformed T (X) represents the GMM centroids.
Because of input data containing the missing points,

the noise, and the outliers, it is desirable to have a robust
estimation of T. To this end, we assume that, the inlier
distribution is a multivariate Gaussian distribution with equal
isotropic covariances σ 2I; the outlier distribution is uniform
with a constant 1

a . Thus,the mixture model for the observed
data points is as follows:

P(Y|X, θ )

=

N∏
i=1

P(yi|θ )

=

N∏
i=1

[
γ

M∑
j=1

τij

(2πσ 2)D/2
e−
‖yi−T(xj)‖

2

2σ2 + (1−γ )
1
a

]
, (1)

where θ = {T, σ 2, γ } includes a set of unknown parameters
and γ is the mixing coefficient that specifies the marginal
distribution over the latent variable, i.e., ∀zi, P(zi = j) = 1−
γ, 1 6 j 6 M . zi ∈ {0, 1} is a latent variable of the i-th sam-
ple, where zi = j, 1 6 j 6 M indicates a Gaussian component
and zi = M + 1 points to a uniform distribution. τij with∑M

j=1 τij = 1 is the membership probability of the GMM.
The matrix {τij} is the correspondence matrix consisting of
two parts. If a point xj corresponds to a point yi, τij = ρ;

otherwise τij = (1− ρ)/M , where 0 6 ρ 6 1. If a point xj
does not have a corresponding model point, τij = 1

M .
In general, the true parameter set θ can be obtained by

maximizing the likelihood function (1). The maximum like-
lihood estimation of θ , i.e., θ∗ = argmaxθ P(Y|X, θ ), can be
determined by minimizing the negative log posterior

E(θ ) = −P(Y|X, θ ) = −
i∑

n=1

lnP(yi|θ ). (2)

The coherent transformation T can be directly achieved from
the optimal solution θ∗.

B. ADAPTIVE WEIGHTED OBJECTIVE FUNCTION
Similar to the standard notations [30], some terms indepen-
dent of θ are omitted. Then, the complete-data log-likelihood
function (2) becomes

Q(θ , θold ) =
1

2σ 2

N∑
i=1

M∑
j=1

pij‖yi − T(xj)‖2

+
NPD
2

ln(σ 2)− NP ln(γ )

− (N− NP) ln(1− γ ). (3)

where pij = P(zi = j|yi, θold ) is a soft decision, which
indicates the degree to which the observed data point yi
coincides with the model point xj under the current esti-
mated transformation T, and NP =

∑N
i=1

∑M
j=1 pij. Here,

two unknown variables have to be solved: parameter set θ
and the responsibility pij. As θ estimation requires pij and
vice versa, it is natural to consider an alternative method.
In this paper, we used the well-known EM algorithm [31] to
solve this problem. It iterates, alternately, with an expectation
step (E-step), which estimates pij under the given θ , and a
maximization step (M-step), which updates θ on the basis of
the current estimate of pij. This new θ is used to determine pij
in the next E-step.
E-step: Denote P as a posterior probability matrix of size

N ×M . pij is determined by the Bayes rule, i.e.,

pij =
P(yi|zi = j, θold )P(zi = j|θold )

P(yi|θold )

=
τije
−
‖yi−T(xj)‖

2

2σ2∑M
k=1 τike

−
‖yi−T(xk )‖2

2σ2 +
(2πσ 2)D/2(1−γ )

aγ

. (4)

M-step: Reestimate the parameter set θnew as follows:
θnew = argmaxθ Q(θ , θold ). Taking the derivative of Q(θ )
with respect to γ and setting to zero gives

γ = NP/N , (5)

Similar to γ , σ 2 can be obtained as follows:

σ 2
=

∑N
i=1

∑M
j=1 pij ‖ yi − T(xj) ‖2)

NPD
, (6)

VOLUME 6, 2018 75949



C. Yang et al.: Non-Rigid Point Set Registration via Adaptive Weighted Objective Function

Next, we consider the term Q(θ ) with respect to T.
We obtain a weighted empirical error as follows:

E(T) =
1

2σ 2

N∑
i=1

M∑
j=1

pij ‖ yi − T(xj) ‖2 . (7)

TPS is commonly used for representing flexible coor-
dinate transformations. It is the only spline that can be
cleanly decomposed into a globally affine and a locally
non-affine subspaces controlled by the coefficients A andW
respectively [29]. Therefore, we model the transformation T
as TPS. TPS can be given by

T(x) = x · A+ K̃ (x) ·W, (8)

where the kernel function K̃ (r) is defined by the TPS ker-
nel K̃ (r) = r2logr , and K̃ij = K̃ (|xi − xj|). It is a
powerful tool for recovering the transformation between
shapes [5], [12], [15], [32].

However, solving the problem of (7) directly would yield
an unstable solution, as there is noise in the specified val-
ues yi [15]. To overcome this problem, we impose the stan-
dard TPS regularization φ(W) = tr(WTKW) on T to control
the complexity of the hypothesis space.This let us express the
mapping T estimation as the following minimizing problem

9(T) =
1

2σ 2

N∑
i=1

M∑
j=1

pij ‖ yi − T(xj) ‖2 +
λ

2
tr(WTKW).

(9)

where the positive real number λ controls the amount of
smoothing. The first term can be seen as an adaptive weighted
objective function, where the weight pij is a data-dependent
adaptation parameter under the given θ . The second smooth-
ness term is independent on the affine components and is the
bending energy.

Next, we substitute ( 8) into the expression ( 9), and then,
obtain the following error function

9(A,W) =
1

2σ 2

N∑
i=1

M∑
j=1

pij ‖ yi − xjA− K̃ (xj)W ‖2

+
λ

2
tr(WTKW). (10)

The spatial mapping consensus problem is further rewritten
as follows:

E(A,W) =
1

2σ 2

N∑
i=1

‖(YM
i − XA−KW)d(Pi)1/2‖2

+
λ

2
tr(WTKW)

=
1

2σ 2 ‖YP
1/2
− (XA−KW)d(1TP)1/2‖2

+
λ

2
tr(WTKW)

=
1

2σ 2 ‖Ỹ− X̃−KWd(1TP)1/2‖2

+
λ

2
tr(WTKW). (11)

where X̃ = Xd(1TP)1/2, Ỹ = YP1/2.

Following [5] and [29], a QR decomposition is used
to clearly separate the warping into affine and non-affine
subspaces. The QR decomposition of X̃ is as follows:

X̃ = [Q1 Q2]
[
R
0

]
, (12)

where Q1 is the orthonormal matrix of size N × 3, Q2 is the
orthonormal matrix of size N × (N − 3), and R is the upper
triangular matrix of size 3× 3. Then, equation (11) becomes

E(A,0) =
1

2σ 2

(
‖QT

2 Ỹ−QT
2Kd(1

TP)1/2Q20‖
2

+‖QT
1 Ỹ− RA−QT

1Kd(1
TP)1/2Q20‖

2)
+
λ

2
tr(0TQT

2KQ20), (13)

whereW = Q20 and 0 is a matrix of size (N−3)×3. Taking
the derivatives of E(A,0) with respect to 0 and equating to
zero yields the following

1
2σ 2 (S

TS0 − STQT
2 Ỹ)+

λ

2
U0 = 0, (14)

where S = QT
2Kd(1

TP)1/2Q2, U = QT
2KQ2. From (14),

we obtain the following:

0 = Q2(STS+ λσ 2U+ ε̃I)−1STQT
2 (15)

where ε̃I is used for numerical stability. Then W is obtained
as follows:

W = Q20 = Q2(STS+ λσ 2U+ ε̃I)−1STQT
2 Ỹ, (16)

The derivative with respect to A yields the following

QT
1 Ỹ− RA−QT

1Kd(1
TP)1/2W = 0 (17)

Then, A is obtained as follows:

A = R−1QT
1 (Ỹ−Kd(1TP)1/2W). (18)

Thus, we obtain the underlying transformation T in
equation (8).

C. IMPLEMENTATION DETAILS
Invoking the non-rigid point set registration problem, we aim
to estimate a non-rigid transformation T that yields the best
alignment between the model point set {xj}Mj=1 and the tar-
get point set {yi}Ni=1. The proposed approach solve both the
matches and the transformation between the two point sets.
For the point correspondences, the SC [15] is used as the
feature descriptors. Then the χ2 test statistic is used as the
cost measure, and the Hungarian method is used to establish
the putative correspondences between {xj}Mj=1 and {yi}Ni=1.
The performance of the transformation estimation relies,
typically, on the coordinate system in which the points are
expressed. In this paper, data normalization is used to control
this factor. For the point sets {xj} and {yi}, we find two
similarity transformations Tx and Ty, i.e. ŷj = Tyyj, which
ensure that the centroid of the points is at the coordinate
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Algorithm 1 Non-Rigid Point Set Registration

Input: Two point sets {xj}Mj=1, {yi}
N
i=1, and parameters λ, a

Output: Aligned model point set {T (xj})Mj=1
1 Normalization: x̂j = Txxj, ŷi = Tyyi;
2 Compute feature descriptors for the target point set {ŷi}Ni=1;
3 Construct kernel matrix K using the definition of K ;
4 Initialization: γ = 0.5, W = 0,A = I3×3, σ 2

=
1

NPD

∑N
i=1

∑M
j=1 ‖ ŷi − T(x̂j) ‖2);

5 repeat
6 E-step:
7 Compute feature descriptors for the transformed {T (x̂j)}Mj=1;
8 Estimate the correspondence between {T (x̂j)}Mj=1 and {yi}

N
i=1 using the feature descriptors of the two point sets;

9 Update the responsibility pij using (4);
10 M-step:
11 Update W and A using equations (16) and (18);
12 Update transformed {T (x̂j)}Mj=1 using equation (8);
13 Update γ and σ 2 using equations (5) and (6);
14 until reach the maximum iteration number ;
15 The aligned model point set {T (xj})Mj=1 is given by T

−1
y {T(x̂j)}

M
j=1 in the last iteration.

FIGURE 2. Sample synthetic data for evaluating the proposed point set registration method. The template point sets are shown in the left
column. Examples of the target point sets in the deformation, noise, outlier, occlusion, and rotation tests are shown in columns 2-4,
respectively. The shapes of the fish and the Chinese character are shown in the top row and the bottom row, respectively.

origin and the average distance from the origin is equal
to
√
2 [9].

The regularization parameters λ and the uniform distribu-
tion parameter a are set to be 10 and 5, respectively. The
proposed method is outlined in Algorithm 1.

The most relevant non-rigid point sets registration algo-
rithm to ours is preserving global and local structures
(PR-GLS), as both methods use the GMM formulation and
the EM algorithm to recover both the correspondences and
the underlying mapping. In PR-GLS algorithm, the repro-
ducing kernel Hilbert space is used to model the spatial
mapping. However, However, our method use the TPS to
parameterize the non-rigid spatial mapping.With the bending
energy minimization, it can be decomposed in to affine and
non-affine subspaces. This may make for the non-rigid point
sets registration. Moreover, the standard TPS regularization
is used to control the complexity of the hypothesis space in
our method.

III. EXPERIMENTAL RESULTS
To verify the proposed point set registration approach, we test
it on various types of synthetic and real data and compare it
to other state-of-the-art methods.

A. EXPERIMENTS WITH SYNTHESIZED DATA
To evaluate our proposed method, we first test it on the
synthesized data set [5], which contains two kinds of shape
models: the fish and the Chinese data sets. The fish and the
Chinese data sets contain 96 and 108 points, respectively. For
each shape model, five sets of data with different degener-
ations including deformation, noise, outlier, occlusion, and
rotation are designed to test the performance of various reg-
istration algorithms. To analyze the influence of point set
distortion, each above distortion is employed to a shapemodel
to generate a target set, and 100 samples are created for each
degradation level. Some examples from the synthetic data
used in the experiments are shown in Fig. 2.
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FIGURE 3. Illustration of registration progress of our method on Chinese character point sets. The aim is to align red circles onto blue pluses.
Results on deformation, noise, outlier, occlusion, and rotation tests are shown in the top-down order, respectively. Results on various number
of iterations are shown the left-right order.

Given two points, we first establish initial correspondences
using SC [15]. For the rotation test, the rotation-invariant SC
is used as in [33] when necessary. Fig. 3 illustrates the reg-
istration process of our approach on Chinese character point
sets. Each row provides a different type of distortion, and the
columns show the iterative alignment progress. We align the
model point set (red circles) onto the target point set (blue plus
signs). From Fig. 3, we can observe that the proposed method
achieves good registration results, and it usually converges
in 30 iterations.

We compare the performance of our method with that
of seven state-of-the-art methods: SC [15], TPS-RPM [5],

CPD [16], COA-RPM [34], EM-TPS [12], MR-RPM
[35], [36], and LPM [37]. The source codes of these com-
peting methods are provided by their authors. The mean
and standard deviation of the registration error of all the
100 samples are given in Figs. 4 and 5. The registration error
on a pair of shapes is quantified as the average Euclidean
distance between a point in the target and the corresponding
point in the warped model. Some registration results obtained
by the eight competing registration methods are also shown
in Figs. 6 and 7. As shown in Figs. 4, 5, 6, and 7, the
proposed method is robust and achieves accurate results on
the synthesized data set, i.e., it achieves the lowest mean of
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FIGURE 4. Comparison of our method with SC [15], TPS-RPM [5], CPD [16], COA-RPM [34], EM-TPS [12], and MR-RPM [35], [36], and
LPM [37] on the fish (left) and Chinese character (right) [5]. The error bars indicate the registration error means and standard
deviations over 100 trials.

the registration errors for seven out of the ten sets of data
(the fish shapes with deformation, noise, and rotation and the
Chinese character shapes with deformation, noise, outliers,

and rotation) and achieves comparable results for the others
(the fish shapes with outliers and occlusion and the Chinese
character shapes with occlusion). CPD, EM-TPS, MR-RPM,

VOLUME 6, 2018 75953



C. Yang et al.: Non-Rigid Point Set Registration via Adaptive Weighted Objective Function

FIGURE 5. Comparison of our method with SC [15], TPS-RPM [5], CPD [16], COA-RPM [34], EM-TPS [12], and MR-RPM [35], [36], and
LPM [37] on the fish (left) and Chinese character (right) [33]. The error bars indicate the registration error means and standard
deviations over 100 trials.

and LPM achieve lowmean of the registration errors for most
of the ten sets of data, but EM-TPS achieves the worst regis-
tration errors for two sets of data (the fish and Chinese char-
acter shapes with outliers), and CPD performs significantly
worse than the others for two sets of data (the fish andChinese
character shapes with rotation). SC yields average scores
for all the experiments. In many cases, COA-RPM does not
perform well.

To determine whether the means of the registration error of
all the 100 samples obtained by our method and other meth-
ods are statistically significant, the p-values from one-way
analysis of variance (ANOVA) statistical test are consid-
ered in this paper. Following [38], a significance level of
5% is chosen to compare the p-values to estimate the null
hypothesis. If the p-values are 6 5%, the null hypothesis
is reject. The statistical results between our method versus
each registration method are list in Tables 1 and 2. From
Tables 1 and 2, we can see that the population means are not
all equal for all cases. Therefore, the null hypotheses can be
rejected.

B. EXPERIMENTS WITH MNIST HANDWRITTEN
DIGIT DATABASE
In this subsection, we will discuss the evaluation of the
performance of the seven point set registration meth-
ods (i.e. SC [15], TPS-RPM [5], CPD [16], EM-TPS [12],
MR-RPM [35], [36], LPM [37], and our method) on the
MNIST handwritten digit database [39] with 10 categories
corresponding to the 10 digits (from 0 to 9). Each category
includes 1000 images. Each image is 28 × 28 in size. In the
registration test, we use the first sample in each category
as the template, and use the rest images as the targets. The
ten templates are shown in Fig. 8. In the experiments, the
48 brightest points are sampled from the Canny edges.
The correspondence between the template point set and the
target point set is established by the registration method.
Then, the template shape is warped using the estimated
correspondence.

The registration error is quantified as the mean of the
Euclidean distance between a point in the target and the
corresponding point in the warped template. Table 3 presents
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FIGURE 6. Examples of registration results by different methods on the fish shapes (from left to right column) degraded by
the deformation, noise, outlier, occlusion, and rotation. Top row: the model (red circles) and target (blue pluses) point sets.
From second to bottom row: registration results by SC [15], TPS-RPM [5], CPD [16], COA-RPM [34], EM-TPS [12],
MR-RPM [35], [36], LPM [37], and our method, respectively.

the values of the quality of registration error for the seven
competing registration methods. From Table 3, we can see
that our method shows superiority over the other six compet-
ing methods with respect to the performance of the average

registration error. EM-TPS, MR-RPM, and LPM achieve low
registration error for the MNIST database. SC and TPS-RPM
yield average scores. CPD obtains the worst registration
errors in this evaluation.
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FIGURE 7. Examples of registration results by different methods on the Chinese character shapes (from left
to right column) degraded by the deformation, noise, outlier, occlusion, and rotation. Top row: the
model (red circles) and target (blue pluses) point sets. From second to bottom row: registration results by
SC [15], TPS-RPM [5], CPD [16], COA-RPM [34], EM-TPS [12], MR-RPM [35], [36], LPM [37], and our method,
respectively.

C. EXPERIMENTS WITH MPEG-7 SHAPE
SILHOUETTE DATABASE
In this subsection, we evaluate the performance of the seven
point set registration methods (i.e., SC [15], TPS-RPM [5],

CPD [16], EM-TPS [12], MR-RPM [35], [36], LPM [37],
and our method) on the MPEG-7 shape silhouette
database [40], particularly the core experiment CE-shape-1
part B, which contains 1400 images from 70 different shapes.
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TABLE 1. P-values between our method versus each registration method for the Chinese character shapes.

TABLE 2. P-values between our method versus each registration method for the Fish character shapes.

FIGURE 8. The first sample in each category used as template.

Each category has 20 images. The first sample in each cate-
gory is used as the template, and the rest images are used as
the targets for the registration test. Some examples are shown

in Fig. 9. In our evaluation, we first sample 150 brightest
points from the silhouette of every shape and run each point
matchingmethod to calculate the transformation between two
shapes and then use it to warp one of the shapes.

The registration error is quantified as the mean of the
Euclidean distance between a point in the target and the cor-
responding point in the warped template. In some categories,
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TABLE 3. Performance comparison on the MNIST database.

TABLE 4. Performance comparison on the MPEG-7 shape silhouette database.

FIGURE 9. Examples of shapes in the MPEG-7 database.

the shapes appear to be rotated and flipped. To address
this problem, three versions of the template (unchanged,
upside-down flipped, and horizontally flipped) are used to
match a target, and the smallest error is chosen as the regis-
tration error. Table 4 gives the values of the quality of the reg-
istration error for the seven competing registration methods.
From Table 4, we can see that our method performs the best.
The average error of the proposed approach is 0.0316 and is
less than that of 0.0448, 0.0570, 0.0650, 0.0845, 0.0388, and
0.0347, respectively, of the SC, TPS-RPM, CPD, EM-TPS,
MR-RPM, and LPM methods.

IV. CONCLUSION
In this paper, we propose a novel method for non-rigid
registration. The correspondences and the transforma-
tion between two point sets are recovered jointly by
using the EM algorithm. We have carried out a perfor-
mance comparison between the proposed approach, SC [15],
TPS-RPM [5], CPD [16], COA-RPM [34], EM-TPS [12],
MR-RPM [35], [36], LPM [37]. The experimental results on
synthetic data as well as real data show that the proposed
approach provides slightly better evaluation index values
than the state-of-the-art methods. On the basis of the eval-
uation index value comparison of various registration meth-
ods, we can draw a conclusion that the adaptive weighted
objective function could effectively recover the underlying
transformation.
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